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FIELD OF THE INVENTION
[0002] The invention relates to natural language processing and the subfield of artificial
intelligence. More particularly, the invention relates to systems and methods of providing accurate
responses from language models and chatbots, including for question and answering, exposition,
and summarization by avoiding and bypassing noun phrase collisions and correcting for errors

caused by noun phrase collisions so that hallucinations are eliminated from LLM responses.

BACKGROUND

[0003] Engineers have been attempting to solve the problem of accurate question and
answering since the early 1960’s. In 1961, a group of researchers at MIT created a program that
answered questions about baseball. In 1966, Joseph Weizenbaum created ELIZA — one of the first
conversational chatbots. ELIZA simulates conversation using pattern matching and substitution
methodology.

[0004] Yet, there still remains a long-felt need for solving the technological NLP problem
of accurate, automated question and answering (Q/A). Consider two models that OpenAl has
released since GPT-4: GPT-40 and ol. In regards to the NLP process of open-ended questions,
GPT-4o0 has an error rate of 82%; and ol has an error rate of 78%. OpenAl’s official ol system
card documents both error rates.

[0005] One of OpenAl’s latest models, 03-mini, has an exceptionally high error rate of



86.6% when answering the simplest of questions — an 86.6% error rate on the SimpleQA
benchmark.

[0006] Meanwhile, models that claim to be hallucination free are unusable in production.
Consider the paper released with accompanying code for LP-LM as a perfect case in point: “LP-
LM: No Hallucinations in Question Answering with Logic Programming” by Katherine Wu and
Yanhong A. Liu. LP-LM has a process for inputting a sentence (add_kb), and a process (query_kb)
for generating a response based on the sentences individually stored through their respective
add_kb calls.

[0007] LP-LM was tested using the researcher’s code without any modifications. The
add_kb was first used to store a simple sentence regarding New York City. The process failed. It
tokenized New York City as [new, york, city] and then wrongly classified it as [adjective,
UNKNOWN, noun]. This is wrong on all three counts, as New York City is a noun — not just
‘city’). Moreover, the parser treats “new’” as an adjective, and discards “york™ as unknown. The
fact that the first sentence tested is stored in an incorrect format betrays the claim of “no
hallucinations.” Numbers are also not handled properly as well.

[0008] Due to the issue with numbers, add kb was tried with the following: “The
population of Amsterdam is big.” This simple sentence failed to ingest because it did not match
any of the exact linguistic structures that the model is looking for. Hence, the model is unusable
for production purposes.

[0009] One more test was conducted. Each of the following sentences was ingested with a
separate kb_add call: “The man ran to the store” and “The man ran as mayor”. Both ingested. Then
query kb was called with: “Where did the man run”. The response was: as(mayor). Aside from
the non-natural language output, the response is wrong. Hence, within a couple minutes, the model
hallucinated — on an extremely simple example at that.

[0010] The model is too restrictive to use due to the requirement for text to match exact
linguistic structures. The researchers acknowledge this limitation. Their proposed potential
solution is to use an LLLM to summarize text, but this introduces hallucinations all by itself. In fact,
this is one of the NLP tasks that this present disclosure solves.

[0011] OpenAl’s latest model, GPT-4.5, was just released on February 27, 2025. Ars

Technica sees this model as proof that hallucinations cannot be soled by LLMs themselves: “For



now, it seems that GPT-4.5 may be the last of its kind—a technological dead-end for an
unsupervised learning approach that has paved the way for new architectures in AI models, such
as 03's inference-time reasoning” The following headline in Futurism sums up the issue: “OpenAl
Admits That Its New Model Still Hallucinates More Than a Third of the Time.”

[0012] It’s important to note that the one-third hallucination rate for GPT-4.5 is on
SimpleQA — quite literally one of the simplest QA benchmarks. This benchmark is too simple to
be used as a measurement for production trustworthiness. In other words, the hallucination rate of
GPT-4.5 will be much higher when applied to actual production tasks.

[0013] As noted by Ars Technica, the technical dead end of GPT models is currently being
replaced with the pursuit of so-called “reasoning” models. However, these models tend to perform
worse on QA, not better. As stated above, OpenAl’s ol reasoning model has an error rate of 78%
on open-ended QA. Meanwhile, its 03-mini reasoning model has an exceptionally high error rate
of 86.6% when answering the simplest of questions — an 86.6% error rate on the SimpleQA
benchmark.

[0014] The deep double digit hallucination rates by the most popular Al models show that
despite sixty years of trying, the industry has yet to find the solution of creating chatbots that

accurately answer questions.

[0015] Thus, there is a long-felt need for chatbots that return accurate responses.
SUMMARY
[0016] The invention relates to systems and methods for obtaining accurate responses from

large language models (LLMs) and chatbots, including for question and answering, exposition,
and summarization. These systems and methods accomplish these objectives via use of noun
phrase avoiding processes such as a noun phrase collision detection process, a query splitting
process, and a topical splitting process as well as by use of formatted facts, formatted fact model
correction interfaces (FF MClIs), bounded-scope deterministic (BSD) neural networks, processes
and methods, and intelligent storage and retrieval (ISAR) systems and methods. These systems
and methods avoid and bypass noun phrase collisions and correct for errors caused by noun phrase
collisions so that hallucinations are eliminated from LLM responses.

[0017] The systems and methods described herein provide advantages over existing



systems and methods by providing accurate responses from language models and chatbots,
including for question and answering, exposition, and summarization. These advantages include
the elimination of hallucinations in responses from chatbots and LLMs. The systems and methods
described herein provide accurate responses from chatbots and LLMs by avoiding and bypassing
noun phrase collisions and correcting for errors caused by noun phrase collisions so that
hallucinations are eliminated from responses.

[0018] Accordingly, the invention features a system for detecting noun phrase collisions.
The system includes a parts-of-speech tagging process for identifying at least one noun phrase in
a text, a vector embedding process for transforming the at least one noun phrase into a vector
embedding, and a text similarity measurement process for computing a similarity score between
at least one pair of vector embeddings in an electronic knowledge base. The at least one pair of
vector embeddings is determined to include a noun phrase collision when the similarity score is
greater than a threshold.

[0019] Unless otherwise defined, all technical terms used herein have the same meaning
as commonly understood by one of ordinary skill in the art to which this invention belongs.
Although methods and materials similar or equivalent to those described herein can be used in the
practice or testing of the present invention, suitable methods and materials are described below.
All publications, patent applications, patents and other references mentioned herein are
incorporated by reference in their entirety. In the case of conflict, the present specification,

including definitions, will control.

BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Figure 1 is a schematic diagram of one embodiment of hardware for an NLP server
(including a neural network server).
[0021] Figure 2 is a flow diagram of one embodiment of a BSD neural network.
[0022] Figure 3 is a table providing examples of training inputs and training outputs for
creating a BSD Sentence Simplification Neural Network.
[0023] Figure 4 is a flow diagram of one embodiment of a system for 100% accurate NLP
transformation of complex documents.

[0024] Figure 5 is a flow diagram of one embodiment of an FF Pipeline.



[0025] Figure 6 is a flow diagram of one embodiment of a Relative Date Conversion

Process.

[0026] Figure 7 is a flow diagram of one embodiment of a document chunking process.
[0027] Figure 8 is a flow diagram of one embodiment of a payload ingestion process.
[0028] Figure 9 is a flow diagram of one embodiment of query processing.

[0029] Figure 10 is a flow diagram of one embodiment of an NGram loop process.

[0030] Figure 11 is a flow diagram of one embodiment of an expansion loop process.
[0031] Figure 12 is a flow diagram of one embodiment of an NGram search process.
[0032] Figure 13 is a flow diagram of one embodiment of an FF S1 search process.
[0033] Figure 14 is an example of data, including a query and source passages, from
RAGTruth.

[0034] Figure 15 is a flow diagram of one embodiment of a BSD natural language response

formatting training set generation.

[0035] Figure 16 is a flow diagram of one embodiment of an ISAR query response with
BSD natural language formatting.

[0036] Figure 17 is a is a chart that compares the 18.4% error rate for the state-of-the-art
method of sentence splitting to the 0% error rate for a real-world BSD Sentence Splitting neural
network of the present invention.

[0037] Figure 18 is a chart that shows the real-world results of a system and method of the
present invention built upon FFs, which eliminated 100% of the hallucinations in the RAGTruth
Corpus for GPT-4 and GPT-3.5 Turbo for both Evident and Subtle Conflicts.

[0038] Figure 19 is a chart that compares the hallucination rate of GPT-4 (46%) versus a
real-world BSD Summarization neural network (0%) of the present invention on text of similar

length.

DETAILED DESCRIPTION
[0039] Embodiments combining some of the inventive steps are discussed below with
reference to the drawings; however, those skilled in the art will readily appreciate that the detailed
description given herein with respect to these figures is for explanatory purposes as the invention

extends beyond these limited embodiments. For example, in light of the teachings of the present



invention, those skilled in the art will recognize a multiplicity of alternate and suitable approaches,
depending upon the needs of the particular application, to implement the functionality of any given
detail described herein beyond the particular implementation choices in the following
embodiments described and shown. That is, numerous modifications and variations of the
invention may exist that are too numerous to be listed but that all fit within the scope of the
invention. Also, singular words should be read as plural and vice versa and masculine as feminine
and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the
two are mutually exclusive.

[0040] The present invention should not be limited to the particular methodology,
compounds, materials, manufacturing techniques, uses, and applications, described herein, as these
may vary. The terminology used herein is used for the purpose of describing particular
embodiments only and is not intended to limit the scope of the present invention. As used herein

2%

and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference
unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a
reference to one or more elements and includes equivalents thereof known to those skilled in the
art. Similarly, for another example, a reference to “a step” or “a means” may be a reference to one
or more steps or means and may include sub-steps and subservient means.

[0041] All conjunctions used herein are to be understood in the most inclusive sense
possible. Thus, a group of items linked with the conjunction “and” should not be read as requiring
that each and every one of those items be present in the grouping, but rather should be read as
“and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction
“or” should not be read as requiring mutual exclusivity among that group, but rather should be
read as “and/or” unless expressly stated otherwise. Structures described herein are to be
understood also to refer to functional equivalents of such structures. Language that may be
construed to express approximation should be so understood unless the context clearly dictates
otherwise.

[0042] Unless otherwise defined, all terms (including technical and scientific terms) are to
be given their ordinary and customary meaning to a person of ordinary skill in the art and are not
to be limited to a special or customized meaning unless expressly so defined herein.

[0043] Terms and phrases used in this application, and variations thereof, especially in the



appended claims, unless otherwise expressly stated, should be construed as open ended as opposed
to limiting. As examples of the foregoing, the term “including” should be read to mean “including,
without limitation,” “including but not limited to,” or the like; the term “having” should be
interpreted as “having at least”; the term “includes” should be interpreted as “includes but is not
limited to”; the term “example” is used to provide exemplary instances of the item in discussion,
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not an exhaustive or limiting list thereof, and use of terms like “preferably,” “preferred,” “desired,”
“desirable,” or “exemplary” and words of similar meaning should not be understood as implying
that certain features are critical, essential, or even important to the structure or function of the
invention, but instead as merely intended to highlight alternative or additional features that may or
may not be utilized in a particular embodiment of the invention.

[0044] Those skilled in the art will also understand that if a specific number of an
introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and
in the absence of such recitation no such intent is present. For example, as an aid to understanding,
the appended claims may contain usage of the introductory phrases “at least one” and “one or
more” to introduce claim recitations; however, the use of such phrases should not be construed to
imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any
particular claim containing such introduced claim recitation to embodiments containing only one
such recitation, even when the same claim includes the introductory phrases “one or more” or “at
least one” and indefinite articles such as “a” or “an” (e.g, “a” and “an” should typically be
interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite
articles used to introduce claim recitations. In addition, even if a specific number of an introduced
claim recitation is explicitly recited, those skilled in the art will recognize that such recitation
should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two
recitations,” without other modifiers, typically means at least two recitations, or two or more
recitations). Furthermore, in those instances where a convention analogous to “at least one of A,
B, and C” is used, in general, such a construction is intended in the sense one having skill in the
art would understand the convention (e.g., “a system having at least one of A, B, and C” would
include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and

C together, B and C together, and/or A, B, and C together, etc.).

[0045] All numbers expressing dimensions, quantities, measurements, parameters, values,



and so forth used in the specification are to be understood as being modified in all instances by the
term “about” unless expressly stated otherwise. Accordingly, unless indicated to the contrary, the
numerical parameters set forth herein are approximations that may vary depending upon the
desired properties sought to be obtained.

[0046] The invention provides systems and methods of accurate Natural Language
Processing (NLP) for high-level NLP processes using novel pipelines of low-level NLP processes,
including methods for creating 100% accurate embodiments of the low-level NLP processes,
thereby resulting in 100% accurate implementations of the pipelined high-level NLP processes.
This novel method for creating 100% accurate low-level NLP embodiments is referred to herein
as “Bounded-Scope Determinism.” The novel pipelines for producing accurate high-level NLP
embodiments are referred to herein as “Model Correction Interfaces” (MCIs). Various aspects of
the systems and methods are shown in Figures 1-6.

[0047] The systems and methods described herein can be installed and performed on one
or more computing devices. Each such computing device can include one or more displays for
viewing content or other visual displays (e.g., graphical user interfaces, etc.) of the system and one
or more user input devices for operating one or more controls or other parts of the system. In some
exemplary embodiments, processes of the systems described herein are installed on and operated
by one or more servers having a communicative connection to one or more computing devices via
which a user or users access and use the system.

[0048] The computing device is a computer (e.g., a desktop computer or a lap top
computer), a tablet computer, a cellular telephone (e.g., a smart phone), a personal digital assistant,
a television (e.g., a smart television), a gaming device, a router, a server, a printer, a camera, or
any other computing device having a processor and an associated memory and may also be capable
of communicatively connecting to a communications network.

[0049] For convenience, in some instances, the communications network is referred to
herein as the Internet; however, in some embodiments, the communications network can be a
different type of network, e.g., a local area network (LAN), a wide area network (WAN), or a
virtual private network (VPN). The communications network can include one or more of the types
of networks identified above, including multiple instances of a type of network and combinations

of one or more types of networks. The communications network can be wired, wireless, or a



combination of wired and wireless networks.

[0050] In embodiments containing a display, the display is a computer monitor or display
screen. The display is communicatively connected to the computing device and can be an integral
part of the computing device or a separate device that includes a wired connection or a wireless
connection to the computing device.

[0051] In embodiments containing a user input device, the user input device can be a
mouse, a trackball, a touch pad, or a touch screen. The system’s display can be a touch screen. In
other embodiments, the system can include both a display and a separate touch screen device. In
some embodiments, the user input device is a microphone communicatively connected to a
computing device that includes software for receiving a voice command to select a link shown on
the display. In one embodiment, the user input device used to select the link is a brain-computer
interface. In other embodiments, the user input device can be a pointing device, keyboard, joystick,
gamepad, jog, dial, camera, button, switch, controller, or voice command device. The user input
device is communicatively connected to the computing device and can be an integral part of the
computing device or a separate device that includes a wired connection or a wireless connection
to the computing device.

[0052] In embodiments containing a server, the server can be remote from the location of
the computing device or in the same location as the computing device. The server may include
some or all of the processes described herein installed thereon, which are then accessible to one or
more computing devices via a communicative connection provided by the communications
network between the server and the one or more computing devices.

[0053] The term “content,” as used herein, includes documents (e.g., Word, Excel
spreadsheet, or PDF documents), videos, audio files and recordings, photographs, images, web
pages, emails, text messages (e.g., SMS and MMS messages), chat messages, instant messages,
and social media application and website posts and messages.

[0054] Disclosure Roadmap

[0055] This disclosure introduces BSD NLP — a system and method for training neural
networks to perform NLP tasks with 100% accuracy. The disclosure then shows how to use BSD
NLP to produce 100% accurate sentence splitting (called BSD Sentence Splitting).

[0056] The disclosure then shows how use BSD Sentence Splitting to create BSD



Coreference Resolution —a 100% accurate coreference resolution neural network. The disclosure
then shows how to pipeline BSD Sentence Splitting and BSD Coreference Resolution to create
Formatted Facts (FFs). The disclosure then shows how to wrap NLP models with FF Model
Correction Interfaces (FF MCI) to correct for any errors made by an NLP process, including
correcting for errors made by chatbots and LLMs.

[0057] Up to this point, the disclosure focuses on the internal knowledge of NLP systems.
Therefore, it then discloses ISAR an intelligent storage and retrieval system and method for
external knowledge storage and retrieval. ISAR is built upon FFs and other NLP processes.
[0058] Finally, this disclosure combines BSD, FF, FF MCI, and ISAR to disclose three
methods of eliminating hallucinations in chatbots and LLMs. These three methods can be used in
isolation or in combination, making this disclosure one unified whole.

[0059] 100% Accurate NLP

[0060] This disclosure presents three systems and methods that can be used to achieve
100% accuracy on both Low-Level NLP Tasks and High-Level NLP Tasks.

[0061] First, this disclosure presents a system and method for training BSD NLP Networks
(see Figures 1-2). BSD NLP is a method of training neural networks to perform NLP tasks with
100% accuracy. For example, the state-of-the-art (SOTA) sentence splitting method has an 18.4%
error rate. The SOTA neural network was trained on DeSSE — a dataset containing 13,199 entries.
In stark contrast, a 5-entry BSD NLP set (see Figure 3) used in few-shot prompting resulted in a
0% error rate in internal testing (see Figure 17). The accuracy of the 5-entry set was tested by
splitting 2,500 sentences in BBC news articles. In comparison, the developers of the SOTA method
tested only 790 sentences. In other words, 5-entry BSD NLP maintained 100% accuracy in more
stringent testing.

[0062] Second, this disclosure shows how to use BSD NLP Networks to create Formatted
Facts (FFs). FFs are simple, self-contained facts derived from the input text. FFs can be used to
significantly improve the accuracy of virtually every NLP task. For example, a system built on top
of FFs eliminated 100% of the hallucinations in the RAGTruth Corpus for GPT-4 and GPT-3.5
Turbo for both Evident and Subtle Conflicts (see Figure 18). For additional details, see “100%
Hallucination Elimination Using Acurai.” (https://arxiv.org/html/2412.05223v1)

[0063] Finally, this disclosure presents a system and method called Formatted-Facts Model
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Correction Interface (FF MCI). The FF MCI can be wrapped around virtually any fact-based NLP
task to ensure 100% accurate responses.

[0064] FF MCI was internally tested on summarizing BBC news articles. Apple News
recently discontinued providing BBC news summaries due to unacceptable hallucinations in
Apple’s technology. The tested FF MCI embodiment of the systems and methods of the present
invention had zero hallucinations when summarizing 500 BBC news articles. BBC News articles
are of similar length to documents used by other researchers when assessing GPT-4’s
summarization capabilities. Figure 19 compares the hallucination rate of the real-world BSD
Summarization neural network (0%) of the present invention to the hallucination rate of GPT-4
(46%) when summarizing narration of similar length.

[0065] Thus, the systems and methods disclosed herein achieved 100% accuracy on Low-
Level NLP tasks (such as sentence splitting) and High-Level NLP tasks (such as summarization),
and they can also be used as the foundational building blocks in larger systems for 100% accuracy
in LLMs and chatbots.

[0066] Bounded-Scope Deterministic NLP (BSD NLP) vs. SOTA Training Methods
[0067] BSD NLP is a system and method for training a neural network to perform an NLP
task with 100% accuracy.

[0068] BSD NLP is perhaps best explained by way of contrast. Therefore, this section
contrasts BSD NLP Network training of the present invention against the way NLP training is
done in the current art. This section discloses the core criteria and steps of BSD NLP by comparing
it to SOTA methods for training neural networks to perform sentence splitting.

[0069] Sentence splitting is a fundamentally important NLP task. After all, sentence
splitting is a fact extraction process. Neural networks trained using BSD NLP achieve 100%
accurate sentence splitting (hence 100% accurate fact extraction).

[0070] The SOTA datasets used to train neural networks for Sentence Splitting and
Rephrasing are: DeSSE, BiSect, WikiSplit, and WebSplit. DeSSE has 13,199 entries. BiSect has
928,440 entries. WebSplit has 1,331,515 entries. The 5-entry BSD set (see Figure 3) achieved
100% accuracy whereas neural networks trained on over one million entries achieved
approximately 80% accuracy or less. Just 5 BSD NLP entries significantly outperformed

neural networks trained on over one million other types of entries. That is because each BSD
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NLP entry is structured in a very specific manner that communicates to the neural network
precisely what it needs to learn to do. This has been the missing key to 100% accurate NLP neural
networks.

[0071] In short, the industry has been training language-based neural networks using
stochastic, non-deterministic methods. On one hand, the industry may seem to be pursuing the
correct path. After all, there are many grammatically correct ways to split a larger sentence.
Therefore, it can even seem incorrect for a neural network’s loss function to assign a penalty cost
to a grammatically correct split during training.

[0072] Yet, as will made clear shortly, BSD NLP intentionally causes the loss function to
assign a cost to grammatically correct sentence splits. In fact, counterintuitively, BSD NLP often
requires the loss function to assign a cost to the vast majority of grammatically correct splits.
[0073] Compare training neural networks on WebSplit versus training neural networks
using BSD NLP. The WebSplit dataset provides many grammatically correct outputs for each
input. Consider the following sentence: “Auburn is part of Lee County in Alabama which is
situated within the state of Alabama in the United States where one of the ethnic groups in the
United States are the African Americans.” The WebSplit dataset contains 64 alternative splits for
this sentence alone. In other words, there are 64 entries in the data set where the input is this same
sentence. However, each of the 64 outputs provides one grammatically correct alternative for
splitting that sentence. Hence, for this one sentence, there are 64 input => output pairs, where each
output gives an alternative correct split.

[0074] In stark contrast, a preferred BSD NLP embodiment requires that there is only
one unique output for each unique input. Assuming there are only 64 ways to split the above
sentence, this means that 63 out of 64 splits will be deemed an error during training, even though
they are grammatically correct. In terms of this sentence, that means 98% of the grammatically
correct splits are counted as being errors. If there are more than 64 grammatically correct splits,
then more than 98% of the grammatically correct hits will be considered to be an error when
training a neural network using preferred embodiments of BSD NLP.

[0075] BSD NLP stands for Bounded-Scope Deterministic NLP. The NLP part of the name
signifies that the input text must contain at least one human-language sentence. The BSD part is

built on two aspects: bounded in scope, and deterministic. Bounded scope refers to the number of
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required transformations being small enough to be learned (e.g., small enough to achieve a zero
cost value from the loss function during training). As for the determinism aspect of BSD, there are

seven criteria:

[0076] 1) There is only one unique output per unique input.
[0077] 2) The unique output must be deterministically derived from the input text.
[0078] 3) The selection of transformations that produce the output must be

deterministically derived from the input.

[0079] 4) The selected transformations must be uniformly applied to all outputs.

[0080] 5) Where the resulting output has multiple values, such that the order of the values
can be changed without information loss, the order of the values must be sorted in a deterministic
manner. Preferred embodiments will use first positional occurrence sorting.

[0081] 6) Where the deterministic selection of transformations can be null, there must be
at least one input => output pair in which the inputs and corresponding outputs are identical in
every respect. The inclusion of additional such pairs will reduce both the size of the neural network
required and reduce the training time and cost.

[0082] 7) Where selection counter examples exist, they must be provided in the input, and
the corresponding outputs must be identical to the input.

[0083] Training neural networks on WebSplit does not involve any of the above steps.
Training neural networks on the rest of the SOTA datasets does not involve implementing criteria
2 - 6. Yet, as is explained below, steps 2, 3, and 4 are core criteria; and steps 5, 6, and 7 are
conditional core criteria. Hence, SOTA training lacks all of the core criteria (at least in terms of
SOTA sentence splitting).

[0084] The following explains how to train a neural network to accurately split larger
sentences into smaller ones. Consider a simple transformation (Transformation X): Remove the
word ‘and’; if the next word is a noun, then add the same punctuation used at the end and capitalize
the next word; if the next word is a verb, add the same punctuation used at the end, add the noun
subject of the prior statement, capitalize the added noun subject.

[0085] On the surface, splitting a sentence on the word ‘and’ appears trivial. However,
even Transformation X is insufficient to qualify as being deterministic. What if the noun subject

is a nested noun phrase? What gets added to the beginning of the new split: the entire nested noun
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phrase, the complex noun phrase, the noun phrase, or the root noun phrase? Each embodiment
must implement a deterministic choice, and apply that choice consistently.

[0086] A preferred embodiment would implement the entire noun phrase length
(including nesting) to ensure the preservation of meaning. This deterministic criterion means
that there is only one correct choice for what gets added to the beginning of the new split. One
correct choice, and only one. Everything else is an error when computing the loss function —
regardless of whether it is grammatically correct or not. Adding this step to Transformation X
results in Deterministic Transformation X.

[0087] Even though Deterministic Transformation X is only a very simple example of
criteria 2 and 3, notice already that none of the SOTA training methods do either of these. In other
words, even before introducing additional transformations, BSD NLP is already different from
SOTA sentence splitting.

[0088] Consider step #2: deterministically derive the output from the input. WikiSplit
annotators had a free hand in choosing where to split. They also freely added words of their own
choosing. Thus, step #2 was not performed in the creation of the WikiSplit dataset. The other
training datasets also gave the annotators a free hand on where to split, and the annotators also
added words of their own choosing. Thus, none of them implemented step #2.

[0089] This is literally the opposite of Deterministic Transformation X. Notice how
Deterministic Transformation X dictates the precise words that must be added (e.g., the entire noun
phrase length of the subject noun phrase (including nesting)). That is the mirror opposite of
allowing annotators to choose. In BSD NLP, the D means there are no choices during training. If
the deterministic transformation has two or more viable alternatives, then it is not a deterministic
transformation in the first place.

[0090] Consider step #3: deterministically choose the selected transformation based on the
input. Once again, the creation of the SOTA datasets did not include this step. WikiSplit and BiSect
always split the input into two sentences. This means that the annotator subjectively chooses
whether to split a particular sentence on “and,” or “but,” or “wherein,” etc. There is no
deterministic selection of transformation based on the input.

[0091] However, Deterministic Transformation X always results in one split for each ‘and’

that serves as a coordinating conjunction. If there is one such ‘and,’ then there is one split. If there
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are two such ‘ands,’ then there are two splits. And so forth.

[0092] The mere fact that WikiSplit and BiSect force the input into two splits further
demonstrates that step #3 was not used (in addition to not using step #2). Likewise, the annotators
of DeSSE were instructed to pick one to four splits of their own choosing from a list of
recommended splits. Hence, DeSSE also did not implement step 2 or step 3.

[0093] Just as step #2 is the mirror opposite of SOTA training, so too is step #3 another
step that is mirror opposite of SOTA training.

[0094] Now consider step #4: The selected transformations must be uniformly applied to
all outputs. As stated above, in regards to Deterministic Transformation X, the transformation must
be applied every time the word ‘and’ serves as a coordinating conjunction. Also as stated above,
none of the SOTA training sets uniformly applied even one transformation across the entire
training set, thereby not implementing this step as well.

[0095] SOTA NLP training is based on the idea that neural networks learn intelligence,
with the idea being that if the neural network is given a variety of correct ways to split a sentence,
then it can learn to choose the best way for any given new sentence.

[0096] BSD NLP is based on the exact opposite premise, which is why the steps are
literally the mirror opposite of SOTA training methods. BSD NLP is based on the premise that
every choice introduced in the outputs adds a degree of error — not a degree of intelligence. The
fundamental training premises could not be more different.

[0097] Now consider step #6: Where the deterministic selection of transformations can be
null, there must be input => output pairs in which the inputs and corresponding outputs are
identical in every respect.

[0098] Not all sentences need to be split. For example, where splitting is solely based on
Deterministic Transformation X, then sentences that do not have the word ‘and’ should not be
split. Therefore, the training data needs to contain examples of when not fo split. That is the
meaning of step #6 as it relates to sentence splitting.

[0099] Yet, notice that none of the SOTA training sets contain even one instance where
the input remains the same. Unlike SOTA, BSD NLP says that the neural networks do not learn
intelligence, they learn to perform the path of least resistance instead. Thus, the neural network

needs to be told when to do nothing so that doing nothing is included in its learned path of least
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resistance.

[00100] Notice that Deterministic Transformation X makes an evaluation on the word ‘and.’
It evaluates whether the word is serving as a coordinating conjunction.

[00101] Consider the following sentence: “Tom and Mary walked into the house and sat
down.” Only the second ‘and’ serves as a coordinating conjunction. The first ‘and’ does not.
[00102] Step #7 means that there should be counter example inputs for every evaluation
made by the deterministic selectors.

[00103] In terms of transformation X, this simply means there needs to be inputs that include
the word ‘and’” where ‘and’ is not being used as coordinating conjunction; and therefore, there is

no split. Hence, the output equals the input.

[00104] Again, since all the datasets solely contain splits, they also do not implement step
#7 either.
[00105] In short, there are two types of non-splits (i.e. two types of output = input): inputs

where no transformation is even selected, and inputs where the selected transformation declines to
perform the transformation due to one or more deterministic evaluations. The criteria in steps #6
and #7 define the types of inputs to include to produce a corresponding output that signifies that a
transformation did not take place. Hence, an alternative output to accomplish the same thing can
be to return a predefined value (such as “[BLANK]”) as the target output, as this accomplishes the
criteria of signifying when a transformation did not take place.

[00106] Once the steps are understood, they can easily be applied to training a neural
network on virtually any NLP task, including sentence splitting. And because the training is based
on the inverse of SOTA methods, it produces profoundly different results. In fact, where all the
steps are followed in producing the input / output pairs, the resulting BSD NLP Network can
achieve 100% accuracy — a significant leap in performance over current systems and methods in
the technical field of NLP.

[00107] Target BSD Output

[00108] A preferred BSD NLP embodiment will employ all seven criteria/steps. However,
steps 2-4 are core BSD NLP criteria. Steps 5-7 are conditional core BSD NLP criteria (i.e., they
are core components in NLP tasks that meet the stated condition of the criteria). Consider an

embodiment in which a transformation selection can be null. For such an embodiment, step #6 is
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a core component because of this condition.

[00109] A preferred embodiment will implement all core criteria, and it will implement all
conditional core components that match the conditions of the embodiment. Such a preferred
embodiment thereby produces Perfect BSD Target Outputs from the corresponding training inputs.
[00110] However, an embodiment that implements at least one core criteria and/or
implements one conditional core criteria falls within the spirit and scope of this disclosure. While
the combination of core criteria ensures 100% accuracy, some NLP tasks may only require
implementing some of the core criteria to significantly improve accuracy — even to the point of
100% accuracy. Moreover, BSD criteria are so transformative that even applying them to part of
a dataset can significantly improve performance. Therefore, doing so falls within the spirit and
scope of this disclosure.

[00111] For example, the five entries in Figure 3 implement core criteria 1 through 6. Yet,
in regards to Sentence Splitting, the fulfillment of criteria 1-6 allowed five examples to achieve
100% accuracy on 2,500 sentences in BBC news articles (see Figure 19).

[00112] Herein, BSD Target Output refers to implementing at least one core criteria for
transforming inputs containing human-language sentences into deterministically transformed NLP
output. Where all core criteria are applied, as well as all conditional core criteria that are applicable
to the conditions of the embodiment, the NLP deterministic transformation of such sentence-
containing training input shall be referred to as Perfect BSD Target Output.

[00113] Step #5: BSD NLP Output Sorting

[00114] None of the sentence splitting datasets implement step #5 because it does not apply
to splitting a complex sentence into five sentences. The task itself results in ordered output — in
order to preserve the meaning of pronouns.

[00115] However, some NLP tasks can result in the output containing multiple values whose
values can be presented in at least one different order while preserving all information. Such NLP
tasks meet the condition of step #5, and therefore, such a preferred embodiment would included
step #5 to ensure 100% accuracy.

[00116] Moreover, such preferred embodiments will use first positional occurrence sorting.
This simply means sorting the order of the values based on the order in which they first appear in

the input.
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[00117] For complex NLP tasks based on multiple steps, a separate first positional
occurrence sorting can be applied at each step. This is explained immediately below.

[00118] Consider the task of extracting facts about people in a text. Here, the task may
involve two levels (i.e., two steps): identify all people, and identify all facts in the input about each
person.

[00119] When there are multiple levels of an NLP task, a preferred BSD embodiment can
use first positional occurrence sorting for each level. Consider a series of self-contained
statements. Some statements are about Alice and others are about Bob. Alice is mentioned first.
However, some of the statements about Alice occur after Bob is mentioned.

[00120] One deterministic method is to use a one-pass first positional occurrence sorting
across the dataset. Thus, the Alice and Bob extractions will occur left to right in a single pass.
Thus, some of the Alice statements will indeed be included in the target output after some Bob
extracted statements.

[00121] However, a multi-level first positional occurrence would allow the target output to
be deterministically organized as: {name }:\nFact_I\nFact_2\n... In other words, the facts about
each person are grouped together immediately after the person’s name.

[00122] Since this is a two-level task, a two-pass first positional occurrence sorting can be
used. The sort order of the names is determined by the first pass. The order of the extracted facts
is determined by the second pass. In this way, all of the statements regarding Alice and Bob are
grouped together under their respective names while still preserving the requirement of
deterministic first positional occurrence sorting.

[00123] As long as each name is selected in the order in which they appear in the text; and
as long as the facts regarding each name are listed in the order they appear in the text; and as long
as the extraction of the facts is done in a deterministic manner (e.g., preserving the facts verbatim),
the BSD neural network can now extract grouped facts about people with 100% accuracy.
[00124] BSD Neural Network Training revolutionizes the use of neural networks for NLP
and the NLP subfield of Al It consistently results in 100% accuracy, even on complex language
tasks.

[00125] At first blush, the preference of first positional occurrence sorting may seem

insignificant. However, modern language models are built on token-based transformers. These
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transformers do not have any inherent awareness of the individual characters in the words they are
processing. Hence, using alphabetical sorting would require increasing the size of the model many
magnitudes (if such can even overcome the limitation). However, token-based transformers
inherently possess positional awareness. By basing the sorting on position, the sorting is based on

the inherent capabilities of the architecture, thereby allowing smaller models to achieve 100%

accuracy.
[00126] Example Embodiment of BSD Neural Network
[00127] BSD Target Output refers to a target output that is deterministically derived from a

training input in accordance with the above criteria. Any neural network trained on at least one
BSD Target Output falls within the spirit and scope of this disclosure.

[00128] Figure 1 and Figure 2 illustrate an example embodiment of a BSD Neural
Network. Figure 1 depicts example hardware. Figure 2 depicts an example process flow for
training a neural network.

[00129] Figure 1 shows a BSD neural network 100 (e.g., an NLP server) that includes a
volatile storage 101 and a non-volatile storage 102 communicatively connected to a processor 103.
The processor 103 is communicatively connected to a network controller 104 that
communicatively connects the BSD neural network 100 to an external network 105.

[00130] The Training Inputs 200 contain at least one human language component. Training
inputs are converted into numerical sequences (usually by tokenization) such as converting text to
numerical tiktokens (as OpenAl does for its GPT models). Another popular method is to use
SentencePiece to convert text into numerical sequences (as the Llama family of LLMs does). Any
method for converting text into numerical sequences falls within the spirit and scope of this step.
The numerical sequences are the actual input into the electronic Neural Network 202. Example
neural networks include RNN, CNN, and transformer-based (such as GPT). Any supervised neural
network can be used, provided that it supports training on text inputs and outputs. The training
method depicted in Figure 2 can be applied to both seq2seq and autoregressive models. Those
ordinarily skilled in the art know how to set up the supervised training of seq2seq, autoregressive,
and other supervised neural networks. They also know how to choose the model architecture for
the given NLP task at hand.

[00131] In seq2seq, each input 200 would be sent to the Neural Network. In autoregressive
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training, a sliding window would likely be used where each numerical token from the target output
205 is appended token-by-token to the input 200 to form another input; whereas the next token in
the target output is the desired result in the given iteration. Those ordinarily skilled in the art know
how to implement both seq2seq and autoregressive networks without further explanation.
[00132] For each iteration (i.e., epoch), the Loss Function 204 computes the difference
between the output 203 of the Neural Network 202 and the corresponding BSD Target Output 205.
It is this step where a Loss Function 204 uses BSD Target Outputs to compute the “loss” (or
“cost”). It is this step where over 98% of grammatically correct sentence splits can be assigned a
penalty cost during BSD NLP training on sentence splitting.

[00133] Embodiments can use Cross-Entropy Loss (Log Loss), KL Divergence,
Reinforcement Learning, Contrastive Loss or any other loss methods. Any loss method that
computes cost relative to the output of the Neural Network and at least one BSD Target Output is
a novel innovation, and therefore, falls within the spirit and scope of this disclosure (where the
BSD Target Output is a bounded-scope, deterministic transformation of the correlating Training
Input).

[00134] Herein, for simplicity, Loss Function shall refer to loss functions known in the art,
as well other measurements such as those used in reinforcement learning. While loss functions
would typically be used for computing token-by-token differences in NLP neural networks (such
as Large Language Models), Reward Signals could be used on a whole sequence basis and are
therefore simply referred to as Loss Function herein. Thus, the term Loss Function is not meant to
limit the seq2seq or token-by-token loss calculations chosen for any given embodiment. The
limitation is that at least one BSD Target Output be used when computing such. This is the step
that can transform the current art from 80% accuracy to literally 100% accuracy. This step can be
applied to virtually any Low-Level NLP Neural Network to profoundly increase accuracy. Where
a zero loss is eventually reached, the accuracy can literally be 100%.

[00135] If the loss during the iteration is less than or equal to the chosen threshold 206 then
the training is done 207. The current state of the trained parameters allows for the Neural Network
to accomplish its task with optimal accuracy. The state of the trained parameters can be stored in
RAM, on disk, in the cloud, or via any other method (thereby allowing the model and its optimal

parameters to be replicated on various devices). Moreover, the model with the optimized
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parameters can be saved as a whole to permanent storage.

[00136] Once the threshold has been reached, any input can now be sent to the Neural
Network, and the output will be accurate (up to 100% accurate where a zero loss has been reached).
[00137] If the threshold has not been reached 206, then the trainable parameters are adjusted
relative to the loss 201. Methods for adjusting the parameters (such as weights and biases) are
well-known in the art (such as using back propagation and gradient descent with optimizers such
as Adam and RMSProp). As previously stated, the innovative step of determining loss based on
outputs that are bounded-scope, deterministic transformations of the input can profoundly improve
the accuracy of a multitude of NLP Neural Networks. Alternatively, where the scope cannot be
bounded, determining loss based on deterministic transformation of the input will profoundly
improve accuracy (where deterministic transformation meets the novel criteria disclosed herein).
Hence, such would still fall within the spirit and scope of this disclosure.

[00138] BSD NLP for 100% Accurate Sentence Splitting

[00139] BSD revolutionizes the technological field of Natural Language Processing (NLP)
by yielding 100% accuracy for low-level NLP tasks. Herein, BSD shall be used as shorthand for
BSD NLP. For example, the BSD system and method produces Sentence Splitting embodiments
that split sentences with 100% accuracy. See Figure 2 and Figure 3 for an example BSD Sentence
Splitting embodiment. Figure 3 provides an example embodiment of Training Input and
corresponding BSD Target Output. The training data is typically provided to LLMs in JSONL files
stored in volatile storage. However, there are many methods known in the art for providing the
electronic training data to the neural network. Provided that the input contains human language,
and provided that the target output is a deterministic transformation of the input (according to the
criteria disclosed herein) such electronically provided training data falls within the spirit and scope
of this disclosure. Electronically storing training data in either volatile memory, non-volatile
memory, or both falls within the spirit and scope of this disclosure.

[00140] It bears noting that such training data can alternatively be used in few shot
prompting in addition to or in lieu of being used for fine tuning. In fact, a 5-shot prompt using the
example training data resulted in O hallucinations when simplifying 2,500 sentences from BBC
articles.

[00141] A simple sentence splitting embodiment could include splitting complex sentences
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based on coordinating clauses that start with the word “and” (or another coordinating conjunction

29 CC

such as “but,” “or,” “for,” “nor,” “yet,” or “s0”). The transformation must also dictate under what
deterministic conditions will words be added, and there must be a deterministic method for
knowing precisely what words will be added (e.g., the entire subject noun phrase including
nesting). In this situation, there is one objective transformation for converting each input into the
target output, thereby satisfying the “determinism” aspect of BSD.
[00142] Given that the neural network is being used to process language, the network
architecture could be a transformer-based model. However, since the bounded scope criteria is
based on loss function, it can be a recurrent neural network (RNN), long short-term memory
(LSTM), gated recurrent unit (GRU), convolutional neural network (CNN), and even a feed
forward network. Moreover, it can include a future architecture, provided that such architecture
includes a loss function and such loss function reaches a level below a given threshold; and where
such architecture is trained using the aforementioned deterministic criteria.
[00143] Any trainable network or model containing learnable parameters that are adjusted
at least in part by a loss function or other measurement of deviation between the neural network
output and a provided target output, such that the provided target output is deterministically
derived from the training input in accordance with the above, falls within the spirit and scope of
this disclosure.
[00144] In regards to 100% accurate sentence splitting, consider the following input/output
pairs:

e Training Input: The cat sat on the chair and it was purring.

e Target Output: The cat sat on the chair. It was purring.

e Training Input: Tom drove home.

e Target Output: Tom drove home.
[00145] The above is based on a single objective transformation of training input to target
output. The sentences are split on the word ‘and’” where the word is being used as a coordinating
clause, and where the word that follows the word ‘and’ is a noun phrase. Since sentence two does
not have the word ‘and,” no transformation is selected resulting in the target output being equal to
the training input.

[00146] This exemplifies an alternative aspect of BSD. In BSD, the training set can include
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examples where the objective transformations result in the target output being identical to the
training input. This greatly diminishes the size of the model needed, and greatly reduces the
amount of training time required, to achieve zero or near-zero training loss. Therefore, achieving
100% accuracy with cheaper, smaller models.
[00147] Now, consider another simple BSD embodiment with multiple objective
transformations. As a reminder, where multiple objective transformations exist, the selection of
such transformation(s) must be deterministically derived from the input itself.
[00148] With this in mind, another embodiment could include splitting complex sentences
using two objective transformations. The first objective transformation (OT) could be to split on
coordinating clauses that begin with the word ‘and’ whenever the following word is not a verb
(Deterministic Transformation Y). The second OT could be to split on coordinating clauses that
begin with the word ‘but’ whenever the following word is not a verb (Deterministic
Transformation Z). The multiple OTs would result in deterministically producing the following
input/output training pairs:

e Training Input 1: The cat was sitting on the chair and it was purring.

e Target Output 1: The cat was sitting on the chair. It was purring.

e Training Input 2: The dog wanted the bone but it was out of reach.

e Target Output 2: The dog wanted the bone. It was out of reach.

e Training Input 3: The dog was sitting on the chair and it wanted the bone but it was out of

reach.

e Target Output 3: The dog was sitting on the chair. It wanted the bone. It was out of reach.

e Training Input 4: Harry met Sally.

e Target Output 4: Harry met Sally.

e Training Input 5: Tom and Mary drove home.

e Target Output 5: Tom and Mary drove home.

e Training Input 6: But, he chose to come over.

e Target Output 6: But, he chose to come over.
[00149] While such an embodiment would require a larger neural network than the prior
example, the number of learnable parameters would still be quite small compared to some of the

most popular models in the art.
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[00150] Notice also that the correct splitting may be one sentence (no splitting), two
sentences, or even three sentences. Where objective transformations are applied, the number of
output sentences can vary. In fact, splitting complex sentences can result in anywhere from one to
a dozen (or even more) simpler sentences in certain embodiments.
[00151] Notice how the entries conform to the criteria:

e Pair 1: Selecting and Implementing Deterministic Transformation Y

e Pair 2: Selecting and Implementing Deterministic Transformation Z

e Pair 3: Selecting and Implementing Deterministic Transformation Y & Selecting and

Implementing Deterministic Transformation Z

e Pair 4: Null Selection of Transformations (i.e., no transformations selected)

e Pair 5: Selecting and Declining Deterministic Transformation Y

e Pair 6: Selecting and Declining Deterministic Transformation Z
[00152] Hence, Pair 5 is an example of step #6. Pairs 5 and 6 are examples of step #7.
Deterministic Transformation Y makes a deterministic evaluation based on the word ‘and.” The
determination is whether to implement the transformation or decline to do so. Therefore, the neural
network needs a training entry for each of these scenarios (e.g., Pair 1 and Pair 5). Likewise,
Deterministic Transformation Z makes a similar deterministic evaluation on the word ‘but.” Hence,
the neural network needs an example of both scenarios (e.g., Pair 2 and Pair 6). Thus, the seven
steps/criteria guide the creation of entries for various deterministic decisions (e.g., Select and
Implement Y, Select and Decline Y, Select and Implement Z, Select and Decline Z, null Selection
(i.e., no Selection)). It is in this way that the path of least resistance equals performing the desired
task with 100% accuracy.
[00153] A more sophisticated sentence splitting machine can include a set of objective
transformations based on both clauses and prepositions. It can even include rewriting words,
provided that the rewriting is deterministic.
[00154] For example, when choosing to write noun phrases during sentence splitting, an
objective transformation must choose whether to consistently use a noun phrase, a complete
compound noun phrase, a complete nested noun phrase, etc. The same objective transformation is
applied consistently throughout the training set. In stark contrast to existing systems and

methodologies, BSD is founded on deterministic consistency.
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[00155] Likewise, consistency may be applied in regards to person named entities. For
example, the chosen objective transformation may use the full name, or the last name, or an
abbreviation, etc., provided that such is applied consistently throughout the training set.

[00156] Consider the following complex sentence: “Tom Smith of Dallas and husband of
Mary loves to barbecue and he enjoys drinking beer.”

[00157] If the objective transformation is based on noun phrase, there is only one correct
split (and therefore, the correct split is objectively deterministic): Tom Smith of Dallas and
husband of Mary loves to barbecue. Tom Smith enjoys drinking beer.

[00158] Any other split would be incorrect.

[00159] If the objective transformation is based on complex noun phrases, there is only one
correct split: Tom Smith of Dallas and husband of Mary loves to barbecue. Tom Smith of Dallas
enjoys drinking beer.

[00160] Any other split, including the prior example, would be incorrect.

[00161] If the objective transformation is based on nested noun phrases, there is only one
correct split: Tom Smith of Dallas and husband of Mary loves to barbecue. Tom Smith of Dallas
and husband of Mary enjoys drinking beer.

[00162] Any other split would be incorrect, including the prior two examples.

[00163] The bolded, italic terms illustrate how the objective application of a deterministic
transformation provides the consistency that the neural network needs in order to fully master the
task. While all three choices (and others) are linguistically correct, 100% accuracy comes from
teaching the neural network one consistent objective. The current SOTA wrongly believes that
neural networks will try to figure out the best alternative. This present invention is based on the
correct understanding that neural networks do the opposite — they consistently look for the path of
least resistance instead. Thus, BSD provides the path of least resistance to ensure the task is truly
mastered.

[00164] This is the missing key over existing systems and methods. There are no 64 correct
alternatives for a given input as is the case for neural networks trained on WebSplit. There are no
variations of purportedly correct outputs caused by various annotators choosing different ways to
split the sentences (e.g., one annotator uses noun phrases, another uses complex noun phrases,

another sometimes uses nested noun phrases and other times leaves the pronoun alone, etc.). There
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is no starting with subjective human summaries. There is no starting with non-deterministic
sentence graphs. This present invention is the literal opposite of SOTA NLP models that are based
on the faulty premise that neural networks can learn to choose the best alternatives. For 100%
accuracy, neural networks need to be trained on only one definitive, deterministic transformation
for each potential input type. The rest of neural network training can proceed as usual. Meanwhile,
the accuracy jumps double digits.

[00165] As stated earlier, the model’s hallucination rate is proportional to the degree that
the neural networks and other models deviate from BSD. The inverse is that the closer neural
networks and models are to BSD, the greater their accuracy. Therefore, adjusting any neural
network or model to be closer to an ideal BSD implementation falls within the spirit and scope of
this disclosure.

[00166] For example, including at least one target output that is deterministically derived
from a training input falls within the spirit and scope of this disclosure. After all, the accuracy of
the model will increase with each added BSD Target Output.

[00167] There may be tasks that cannot be bounded. However, the accuracy of the model
can be extremely improved by still adhering to the deterministic requirements of target outputs.
Hence, BSD can be used to achieve optimal accuracy for virtually any fact-based NLP task.
[00168] In BSD, the neural network learns to select and apply the one correct objective
transformation for the given input. Not choose between a variety. For example, in a BSD
embodiment that includes five objective transformations, for any given input there is only one
correct selection of transformation(s) and only one correct output after applying the correctly
chosen transformation(s).

[00169] For example, where the objective transformations consistently include splitting on
both ‘and’ and ‘but’ coordinating clauses, a sentence containing one ‘and’ coordinating clause and
containing one ‘but’ coordinating clause must be split on both.

[00170] To not split on either is an error when computing the loss function. To split on only
one of them is an error when computing the loss function. To create a hybrid transformation is an
error when computing the loss function. The only way to achieve a zero loss is to consistently split
on both throughout the training set. It is this very lack of variety that gives the neural network the

guidance it needs to fully master the problem, and thereby produce 100% accurate output every
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single time.

[00171] It is within the realm of possibility that someone working on and with the existing
systems and methods has recognized that consistently splitting on an ‘and’ coordinating clause
could be learned by a neural network. Even if such exists, those ordinarily skilled in the art still
have not developed a systematic method of applying multiple objective transformations to
accurately split complex sentences into many smaller ones (such as splitting an extremely complex
sentence into a dozen smaller ones with 100% accuracy) as documented by current SOTA methods
and current SOTA error rates, despite decades of searching for an accurate method to do so.
[00172] Utility of BSD

[00173] The present inventor confirmed the superiority of BSD by implementing BSD in
few-shot LLM inputs. For example, LLM input that included just five deterministically generated
input/output pairs outperformed full models trained on over one million non-deterministic pairs.
[00174] BSD is the Al breakthrough that the world has been searching for. BSD, combined
with MCI disclosed below, even provides 100% accuracy for high level tasks such as
Question/Answer and Exposition.

[00175] Novelty of BSD

[00176] BSD is not only novel, it is markedly different from other systems and methods.
Consider the contrast of BSD with neural networks trained on the WebSplit, WikiSplit, and/or
DeSSE datasets for the NLP task of sentence splitting. Here, BSD NLP is literally the opposite.
[00177] SOTA Coreference Resolution Does Not Fulfill BSD Criteria

[00178] Coreference Resolution is the NLP task of finding all linguistic expressions in a
given text that refer to the same real-world entity. Consider the following example: “Tom walked
into the store where he found the bat.” The linguistic expression ‘he’ refers to the same real-world
entity ‘Tom.” Thus, the resolved sentence would read “Tom walked into the store where Tom
found the bat.”

[00179] On the surface, neural networks trained to perform coreference resolution may
appear to be doing so in a deterministic manner. Yet, the current SOTA coreference resolution
only has an accuracy of 83.6% (i.c., the Maverick_mes coreference model).

[00180] While SOTA coreference models may appear to have been trained in accordance

with the above, the reality is that they are neither deterministic (as defined above) nor bounded in
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scope (as defined above). In other words, they do not meet either criterion — let alone both.
[00181] For example, Maverick_mes and other SOTA models (such as lingmess) were
trained on a collection of documents known as the OntoNotes corpus. That was largely due to the
fact that this document collection contains human annotations for coreference resolution —
providing the model known endpoints on which to train. However, rarely discussed is the fact that
the human annotators themselves disagreed with each other. The OntoNotes corpus was introduced
in a paper entitled “OntoNotes: A Large Training Corpus for Enhanced Processing.” Page 5 of
that paper states: “All of the coreference annotation is being doubly annotated and adjudicated.
Over the first two years, the overall average agreement between individual annotators and the
adjudicated result for non-appositive coreference using the MUC coreference scorer was 86%.”
[00182] Researchers only agreed with the selected annotation 86% of the time in regards to
standard coreferences. The reference to non-appositive coreferences is a reference to typical types
of coreferences. An example of an atypical type (an appositive) is: “My teacher Mrs. Green is a
tough grader.” Here, “Mrs. Green” is an appositive coreference to “my teacher.” The researchers
treat such appositives as a special case of coreference resolution. Hence, in regards to typical,
everyday coreferences, the researchers disagreed with the chosen annotation 14% of the time.
Given that humans only agreed 86% of the time, then the dataset most certainly contains a large
amount of subjective (i.e., non-deterministic) labels.

[00183] The rest of the dataset also includes subjectivity. For example, annotators were told
to annotate nouns and verbs 50 sentences at a time. As long as there was 90%+ agreement among
annotators, the annotations remained as is — without revision and clarification.

[00184] “A 50-sentence sample of instances is annotated and immediately checked for inter-
annotator agreement for all verbs and any noun with frequency over 100. ITA scores below 90%
lead to a vrevision and clarification of the groupings by the linguist.”
(https://www.cs.cmu.edu/~hovy/papers/090ntoNotes-GALEbook.pdf) That fact that scores can
differ at all means that a deterministic process was not being applied (at least in terms of the way
“deterministic” is used herein). The fact that up to 10% disagreement remains unrevised further
documents that subjective nature of the process (despite the researchers referring to the allowed
10% discrepancy as being an “empirical process”). Thus, OntoNotes does not meet the

determinism requirement of BSD.
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[00185] Nor does it meet the bounded-scope requirement. The reason for the disagreements
is due to the nature of some of the documents. OntoNotes not only contains well-written documents
such as news articles, but it also includes broadcasts, “typically recordings of entire shows
covering various topics.”

[00186] Naturally, people do not always speak using perfectly grammatical sentences —
creating occasional confusion as to what they actually mean. (This can even occur in well-thought-
out writings as well.)

[00187] Thus, the corpus includes a wide range of texts, including those with grammatical
errors, and incomplete thoughts, thereby violating the bounded-scope requirement of BSD.
[00188] Grammatically correct text can be considered bounded in terms of Sentence
Simplification, but it is unbounded in terms of Coreference Resolution.

[00189] Even the most complicated sentences must be structured around known
grammatical rules. Thus, when splitting sentences, so long as it is done using clauses and
prepositions, and provided the sentence is grammatically correct, the sentence can reliably be
simplified.

[00190] However, coreference resolution is much more complex. Consider an article where
“John Smith” is mentioned in the second sentence of paragraph one. The word ‘he’ is used to refer
back to John Smith three paragraphs later. There are a large number of complex sentences that can
exist between the reference to “John Smith” and the reference to “he.” Moreover, the sentences
containing the references may themselves be complex.

[00191] So even input/output pairs that finally meet the deterministic requirement, likely
will not meet the bounded requirement.

[00192] 100% Accurate BSD Coreference Resolution

[00193] One way to reliably bound the problem is by applying BSD Sentence Splitting to
the text (producing SS, or “Simplified Sentences”). The SS is then sent to a BSD Coreference
Resolution process — a neural network that has been trained to perform coreference resolution on
SS_Input / BSD_Target_Output pairs. By solely using BSD Simplified Sentences in the training,
the complexity is profoundly reduced — thereby bounding the size of the problem, such that a
relatively small neural network can achieve zero as the output from the loss function during

training.
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[00194] Some embodiments may bound the problem size even further by leaving all
references at a certain distance unresolved. Training could include supplying five paragraphs of
SS in each input of the training set. For example, if the selected maximum distance is five SS
sentences, pronouns and other types of coreferences would only be resolved in the target output if
the prior reference exists within the prior five SS sentences. Since this is an objective
transformation, the neural network can (and will) learn to do the same.

[00195] Other embodiments may choose for the target output to be the same as the training
input for all instances of ambiguous coreference resolution.

[00196] Moreover, BSD embodiments must choose deterministic rules for all nouns and
named entities. For example, the embodiment must choose whether the resolution carries forward
noun phrases, compound noun phrases, or nested noun phrases. The selected choice must be
applied throughout the training dataset. The same goes for the names of people, companies, and
even countries (e.g., full country names and/or abbreviation).

[00197] So long as the training input is bounded (which is accomplished by using SS), and
provided that the target outputs are deterministically derived from each SS, 100% accurate
coreference resolution will be achieved. Here, the metric of 100% accurate means that any
linguistic elements that are rewritten will be done correctly. It does not mean that every potential
linguistic reference will be replaced (for reasons stated above).

[00198] Formatted Facts (FF)

[00199] As stated above, BSD Coreference Resolution embodiments can be trained on the
output of a BSD Sentence Simplification embodiment. The output of a BSD Sentence
Simplification embodiment (SS) can be the training input, and the target output is an objectively
transformed derivative of that input (as described above). This can be thought of as the Simple
Sentences => Coreference Resolution pipeline.

[00200] Herein, the pipeline of Simple Sentences => Coreference Resolution shall be
referred to as the “FF Pipeline.” FF stands for “Formatted Facts.” This pipeline produces
Formatted Facts (FFs) by first simplifying the text (such as using a BSD Sentence Splitting
embodiment). (The output of the sentence simplification is called SS. SS stands for “Simplified
Sentences.”) The simplified sentences output from the Sentence Simplification process are then

used as input to the coreference resolution process (such as a BSD coreference embodiment as
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described above). Thus, the Sentence Simplification process first produces SS, which is then
transformed into Formatted Facts (FF) through the coreference resolution process.

[00201] While the preferred embodiment applies Sentence Simplification prior to
Coreference Resolution, other embodiments can use the reverse order while remaining within the
spirit and scope of this disclosure. The combination of the two processes is a novel method for
improving the accuracy of NLP tasks. However, where 100% accuracy is sought, embodiments
may first use Sentence Simplification followed by Coreference Resolution.

[00202] Moreover, where accuracy is paramount, a BSD Sentence Simplification
embodiment is used for the Sentence Simplification process, and a BSD Coreference Resolution
embodiment is used for the coreference resolution. In other words, the BSD Sentence
Simplification produces the SS, which is then transformed into FF through the BSD Coreference
Resolution process.

[00203] When BSD processes are used for both, the FF Pipeline can also be referred to as
the BSD FF Pipeline to signify the perfect accuracy.

[00204] The objective of the BSD FF Pipeline is to transform text into sentences that are
both simple and self-contained. The BSD Sentence Splitting => BSD Coreference Resolution
pipeline is often sufficient to transform narrative text into FFs (sentences that are both simple and
self-contained). Thus, this represents the simplest FF Pipeline.

[00205] Non-Narrative Converters for Medical, Scientific, Financial, Legal, and other
High-Stakes Texts

[00206] Some types of text may require additional processes to meet the FF criteria. For
example, some text may include additional elements that are non-narrative (such as caselaw
citations, references, and/or LaTeX formulas). In such cases, a Non-Narrative Converter process
can be used to strip the non-narrative components. Such a process can create a map (as is known
in the art) for adding the removed content back in after the NLP process has been performed.
Additionally, or in lieu of a map, the process may insert narrative placeholders to demarcate where
the information was removed. Given that the placeholders are narrative, they will pass through the
sentence simplification and coreference resolution. The placeholders may be removed after the
FFs are created (before sending the text to the NLP process). The placeholder FF output is thus a

map for restoring the removed elements after the NLP process has been performed. Those
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ordinarily skilled in the art know how to construct processes that both strip and restore non-
narrative text, and therefore, can implement this inventive step upon learning of it.
[00207] The accuracy of virtually all NLP tasks can be profoundly improved using FFs.
Consider the high-level NLP process of Summarization as a perfect case in point. Rather than
sending the text directly to the summarization process, the output of the BSD FF Pipeline can be
sent instead.
[00208] Example
[00209] Thus, an example summarization embodiment can include:

e clectronic text;

e an electronic sentence simplification process;

e an electronic coreference resolution process;

e an electronic summarization process;

e in which the text is sent to the sentence simplification process;

e the output of the sentence simplification process is sent to the coreference resolution

process; and

e the output of the coreference resolution process is sent to the summarization process.
[00210] By first splitting the sentences, and then applying coreference resolution, the output
of the summarization process will be profoundly more accurate.
[00211] On the surface, the above may appear trite (rather than profound). However,
consider a real-world example. The following sentence is from Wikipedia: “Commander Neil
Armstrong and Lunar Module Pilot Buzz Aldrin landed the Apollo Lunar Module Eagle on July
20, 1969, at 20:17 UTC, and Armstrong became the first person to step onto the Moon’s surface
six hours and 39 minutes later, on July 21 at 02:56 UTC.”
[00212] Now consider this sentence transformed into FFs where the BSD Sentence
Simplification process deterministically transforms based on clauses and non-causal prepositions
using nested noun phrases; and the BSD Coreference Resolution deterministically uses title, first
name, last name. Such a pipeline creates the following FFs from the sentence:

e Commander Neil Armstrong and Lunar Module Pilot Buzz Aldrin landed the Apollo Lunar

Module Eagle.

e Commander Neil Armstrong and Lunar Module Pilot Buzz Aldrin landed the Apollo Lunar
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Module Eagle on July 20, 1969.

e Commander Neil Armstrong and Lunar Module Pilot Buzz Aldrin landed the Apollo Lunar
Module Eagle at 20:17 UTC.

e Commander Neil Armstrong became the first person to step onto the Moon’s surface six
hours and 39 minutes later.

e Commander Neil Armstrong became the first person to step onto the Moon’s surface on

July 21.
e Commander Neil Armstrong became the first person to step onto the Moon’s surface at
02:56 UTC.
[00213] These simple, self-contained statements have been automatically generated with

100% accuracy from one single sentence using a BSD FF Pipeline.

[00214] Whether the NLP task be Summarization, Named Entity Recognition,
Question/Answering (QA), Exposition, and more, the accuracy is profoundly improved by sending
such FFs in lieu of, and/or in addition to, the original text. While humans prefer pronouns and
other contractive linguistic structures, this present inventor discovered machine learning models
perform much better on the opposite.

[00215] The preferred embodiment for the sentence simplification process is a BSD
Sentence Splitting process. The preferred embodiment for the coreference resolution process is a
BSD Coreference Resolution process (i.e., a coreference resolution neural network trained on
sentences simplified in the precise same manner as the sentence simplification process in the given
embodiment).

[00216] For optimal accuracy, it is imperative that the Coreference Resolution process be
trained on the output of the same embodiment chosen for the BSD Sentence Splitting. In other
words, while there are multiple ways to implement BSD Sentence Splitting, whatever way is
chosen should be used for the training of the Coreference Resolution process.

[00217] The combinations of simplifying sentences and applying coreference resolution on
them is novel in that there is no reference to this combination in existing systems and methods.
Given that this novel combination affords tremendous utility via improvements in accuracy
demonstrates that it is non-obvious (as such improvements in accuracy have been sought for

decades without those skilled in the art thinking to modify the input in such a manner).
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[00218] The above system and method is applicable to virtually any NLP task, such as
Named Entity Recognition, Parts of Speech Tagging, and other NLP processes well-known in the
art. Any process that takes human language for at least one input is an NLP process for purposes
of this present disclosure. Named Entity Identification and Named Entity Recognition are both
defined and discussed in detail below. Parts-of-Speech Tagging (POS Tagging) refers to using
NLP libraries to identify whether the words in the text are nouns, adjectives, etc. and also in tagging
their linguistic dependencies as well. There are many such libraries known in the art (e.g. Stanford
NLP, Spacy, and Flair).
[00219] For clarification, accuracy can be profoundly increased by sending SSs instead of
sending the raw text. Accuracy can be improved even more by sending FFs.
[00220] Example
[00221] Hence, one exemplary embodiment of a system for accurate NLP can be as follows:

e an electronic sentence simplification process;

e an electronic coreference resolution process;

e an electronic NLP process;

e in which the text is sent to the sentence simplification process;

e the output of the sentence simplification process is sent to the coreference resolution

process; and

e the output of the coreference resolution process is sent to the NLP process.
[00222] Simplification Processes
[00223] As stated earlier, FFs are both simple and self-contained. This section focuses on
electronic methods of transforming text to meet the first criteria (i.e., processes that make text
simpler). Any process used to transform text into simpler sentences shall herein be referred to as a
Simplification Process.
[00224] Disclosed herein are three novel Sentence Simplification Processes: BSD Sentence
Splitting, BSD Sentence Annotation, and Named-Entity Token Substitution.
[00225] The previously disclosed BSD Sentence Splitting method can be used as the chosen
Simplification Process in various embodiments. Other Sentence Splitting and Rephrasing methods
known in the art can be used in lieu of and/or in conjunction with BSD Sentence Splitting. Where

accuracy is paramount, BSD Sentence Splitting would be the preferred process. Where speed is
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more important than accuracy, perhaps a rule-based sentence splitter may be the preferred process.
Naturally, processes can be combined to produce a single Simplification Process.

[00226] Sentence Splitting and/or Sentence Rephrasing are two examples of processes that
electronically simplify text. Any method that reduces the complexity of the input text is a Sentence
Simplification Process.

[00227] Sentence Annotation as a Sentence Simplification Process

[00228] A novel simplification method disclosed herein is called Noun-Phrase Annotation
Process. It is an elegant solution to the myriad of NLP tasks that suffer from inaccuracy, tasks that
include not only Summarization and Question/Answer but also the most foundational NLP tasks
such as Named Entity Recognition, Parts of Speech Tagging, and Coreference Resolution.
[00229] Just as its name suggests, a Noun-Phrase Annotation Process annotates the noun
phrases in the text. Importantly, the annotation is consistent and deterministic. For example, noun
phrases could be annotated by starting each noun phrase with an underscore, ending each noun
phrase with an underscore, and connecting each word in the noun phrase with an underscore. One
example alternative would be to annotate the noun phrase minus any preceding determiner (e.g.,

[

a’, ‘an’, ‘the’, ‘this’, etc.). Consider five such examples below:

e _Mary_boughta _car_.

_Mary_Jenkins_ bought a _car_.

_Mary_ bought a _brand_new_car_

_Tom_ bought a _stunning_,_life-size_photo

_Tom_Jenkins_of Deerfield_, Florida bought a _stunning_,_life-
size_photo_signed_by_the_photographer.

[00230] The latter example includes a complex noun-phrase (“Tom Jenkins of Deerfield,
Florida) as well as a nested noun phrase (“stunning, life-size photo signed by the photographer”).
Notice that even though the final sentence is much more complex than the first, the annotation
communicates the following to the neural network: __ bought a __. In fact, all five examples
communicate the very same.

[00231] Now consider how this will assist in NLP tasks such as coreference resolution. For
example, “Mary bought a car. It was green.” Becomes “Mary bought a car. The car was green.”

Likewise consider: “Tom Jenkins of Deerfield, Florida bought a stunning, life-size photo signed
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by the photographer. It was framed in wood.” This becomes “Tom Jenkins of Deerfield, Florida
bought a stunning, life-size photo signed by the photographer. The stunning, life-sized photo
signed by the photographer was framed in wood.”

[00232] Notice how the annotations reduced the number of deterministic transformations
that the neural network needs to learn. Hence, the annotation process assists in bounding the scope
of the training. Such bounding profoundly reduces the size of the model required to achieve a 0%
loss function output; thereby achieving 100% accuracy on the smallest possible model with
shortest possible training time. This optimizes accuracy, speed, and cost all at the same time.
[00233] This reduction in deterministic transformation learnings means that the Sentence
Annotation Process (SAP) can be used to bound the scope of various high-level NLP tasks to create
a BSD Neural Network for that high-level task.

[00234] The Sentence Annotation Process (SAP) can be built upon standard libraries such
as Spacy and Allen NLP (hereafter referred to as “Spacy”; where “Spacy” is used herein, any
suitable NLP library may be substituted). However, the accuracy of the annotation will depend on
the accuracy of the aforementioned libraries.

[00235] BSD Sentence Annotation

[00236] Where accuracy is paramount, a BSD Sentence Annotation process can include a
neural network trained input/output pairs such that the output is deterministically transformed from
the input. Example transformations could include annotating noun phrases, annotating complex
noun phrases, or annotating nested noun phrases. Provided that the identical objective
transformation is used throughout the training set, and provided a sufficient representative sample
is provided, and provided the loss function reaches zero during training, a 100% accurate BSD
Sentence Annotation Process shall be produced.

[00237] The BSD Sentence Annotation could be used at various locations within the BSD
FF Pipeline. Upstream BSD processes can be trained on annotated inputs and outputs.

[00238] Also, there can be a process for removing annotations in embodiments such as
where sending regular text to the user is the objective. Methods for undoing the annotation are well

[T

known in the art. For example, removing the (underscore) characters is a trivial process. Such

a process shall be referred to as the Sentence Annotation Removal Process.

[00239] Example
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[00240] Hence, one example embodiment of a system for accurate NLP can be as follows:

e asentence annotation process;

e an electronic sentence simplification process;

e an electronic coreference resolution process;

e asentence annotation removal process;

e an electronic NLP process;

e in which:

e the sentence simplification process has been trained on annotated input;

e the coreference resolution process has been trained on annotated input;

e the text is sent to the sentence simplification process;

e the output of the sentence simplification process is sent to the coreference resolution

process;
e the output of the coreference resolution process is sent to the sentence annotation removal
process; and

e the output of the sentence annotation process is sent to the NLP process.
[00241] Utility of the BSD Sentence Annotation Process
[00242] This Noun-Phrase Annotation method profoundly improves accuracy all by itself
due to the fact that neural networks take the path of least resistance during the training process.
For example, a neural network trained to detect pneumonia in chest X-rays learned to focus on
metadata or markers in the images rather than the actual lung features. This occurred because
certain hospitals included different markers or annotations in their X-rays, and the model learned
to correlate those with the presence of pneumonia.
[00243] As another example, a study showed that image classification models like
convolutional neural networks (CNNs) trained on the ImageNet dataset tend to rely on texture
rather than shape for classification. For example, a neural network might classify a picture of a
cat-like object covered in “elephant skin texture” as an elephant. This preference for textures is
easier to exploit than learning the shapes and semantics of objects.
[00244] Given the importance of this phenomena, consider a final example from
dermatology image classification. Models trained to detect skin cancer have relied on artifacts such

as rulers or measurement tools often included in malignant samples. A model learned to associate
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the presence of a ruler with malignancy, a clear shortcut that bypassed the need for true diagnostic
reasoning.

[00245] The present inventor realized this same form of self-organization found in image-
based CNNs also occurs in transformer-based language models. The present inventor also realized
that this phenomenon can be transformed from being a problem into being the key to producing
smaller models that are profoundly more accurate than larger models 10-100 times their size (even
more accurate than models 1,000 times their size).

[00246] This led to the novel innovation of BSD Sentence Annotation Process. The
annotation process is akin to intentionally adding in the ruler to guide the neural network down the
path of least resistance, thereby reducing the number of objective transformations that the neural
network needs to learn in order to reach a zero or near zero loss value result. This is not an abstract
method. On the contrary, the number of rules with and without the process are quantifiable. For
example, the model size and number of training epochs that a coreference resolution machine
would need with and without the Noun-Phrase Annotation Process are both quantifiable. The BSD
Sentence Annotation can measurably reduce both the model size and number of training epochs
needed to reach zero training loss.

[00247] The novel innovation of annotating noun phrases comes from the present inventor’s
epiphany that led to creating the Noun-Phrase Dominance Model. In short, this descriptive
framework states that LLMs self-organize around noun phrases during training. Hence, annotating
noun-phrases guides the LLM self-organization resulting in extremely powerful, extremely small,
extremely inexpensive models.

Once those skilled in the art learn the above, they too can readily implement BSD Simplification
Processes with no additional training or disclosure required.

[00248] Named Entity Token Substitution as a Sentence Simplification Process
[00249] Named entities are one of the biggest weaknesses of modern LL.Ms. Named entities
refer to the key subjects of a piece of text, such as names, locations, companies, events and
products, as well as themes, topics, times, monetary values and percentages. Named Entity
Identification (NEI) refers to NLP processes that identify which terms in a given text are named
entities. Named Entity Recognition (NER) goes one step farther. This NLP process identifies each

named entity and provides a description as to the entity type (e.g., name, location, company, etc.).
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[00250] Named entities are perhaps best explained by way of example. Consider the
following sentence: “Apple acquired XYZ Corp. for $1 billion.” There are three named entities in
this example: Apple, XYZ Corp. and $1 billion. As stated above, named entities include names of
companies and products as well as monetary values. Named entities also include references to
time. Hence, Named Entity Identification (NEI) is also useful in identifying relative time
references that need to be converted into absolute time to transform the sentence into a literally
true independent statement

[00251] For example, LLMs struggle to distinguish “Alfonso” and “Afonso.” They also
struggle with dates. In fact, GPT-4 has a 28.6% error rate on the simple task of citing title, author,
and year of publication, as these are all named entities.

[00252] While LLMs struggle to distinguish “Alfonso” from “Afonso” they have no
problem distinguishing between “Chuck” and “Bartholomew.” Experiments conducted by the
present inventor identified this phenomenon.

[00253] This phenomenon, previously non-obvious to those skilled in the art prior to the
present inventor’s experiments, holds the key to resolving the above LLM weaknesses.

[00254] This present invention discloses a novel process called Token Substitution Process.
This section more narrowly focuses on Named Entity Token Substitution Process, where tokens
representing named entities are replaced with simpler placeholder tokens before being sent to the
NLP process such as an LLM. The placeholder tokens are then replaced back in the NLP process
output (e.g., the LLM response).

[00255] From the perspective of Token Substitution Processes, “simpler” refers to tokens
that are either shorter and/or whose vector embedding distance is greater than the original set.
[00256] Named-Entity Token Substitution can include replacing the names of people with
a simpler name of the same gender. It can include replacing dates with a simpler token reference,
even converting the tokens for “December 25, 20217 into a single in-vocabulary token
“Christmas.” In fact, even other dates can be converted to single tokens, including “Christmas”
even if they are not “December 25.” So long as Christmas can be converted back to the original
date in the text, such will still work in the vast majority of modern LLMs.

[00257] Likewise, organizations can be substituted with simpler tokens.

[00258] The combination of Sentence Splitting and Token Substitution results in extremely
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simple sentence structures from the perspective of numerical tokens, making it easy for the NLP
process to produce accurate responses. For example, extractive summarization on token-swapped
content makes it easier for the Summarization Process to “follow the plot.”

[00259] Naturally, swapping out Named Entity Tokens requires first identifying the Named
Entities in the text. Thus, this present invention discloses a method of achieving 100% accurate
Named Entity Identification (NEI) later below. The 100% accurate Named Entity Identification
(NEI) can be used to identify the named entities that can thereafter be swapped with simpler tokens,

and then be remapped to the original named entities after receiving the output from the NLP

process.
[00260] Noun-Phrase Token Substitution as a Simplification Process
[00261] It is the present inventor’s discovery that LLMs self-organize around noun phrases.

Therefore, any simplification of noun phrases should result in a corresponding increase in
accuracy. This is the premise underlying the above Noun-Phrase Annotation Process.

[00262] Noun-Phrase Token Substitution refers to replacing noun-phrases with simpler
token representations, in a manner similar to named entities. In fact, named entities are themselves
noun phrases, hence the corresponding increase in accuracy.

[00263] Consider the following example: “The first car I ever purchased in my lifetime was
a Ford.” Annotated such a sentence can be: The first car I ever purchased_in_my_lifetime_
was a_Ford .” The annotated portion could be reduced to its determiner and root (i.e., “The car”)
resulting in the following sentence “The car was a Ford.”

[00264] Notice that there is information loss. Therefore, Noun-Phrase Token Substitution is
perhaps best used in NLP processes where information loss is acceptable (such as Summarization)
and avoided where information loss is unacceptable (such as Question/Answering).

[00265] Notice furthermore that Named-Entity Recognition Token Substitution does not
result in any information loss (post remapping). Said another way, Named-Entity Token
Substitution is a form of Noun-Phrase Token Substitution that results in zero information loss, and
therefore, is effective across a broader portion of NLP processes.

[00266] A caveat is that the query itself must be substituted in the same manner in NLP
processes such as Question / Answering. For example, consider where “Alfonso” is replaced with

“Chuck” in the text. Further consider the query: “Who is Alfonso’s mother?” The query can be
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converted to “Who is Chuck’s mother?” If the LLM response contains Chuck, then Chuck can be
remapped to Alfonso resulting in the correct response.

[00267] Self-Containment Processes

[00268] As stated above, FFs are both simple and self-contained. Three example
simplification processes have been disclosed above: BSD Sentence Splitting, Sentence Annotation
Process, and Token Substitution Process (e.g., Named-Entity Token Substitution Process). Such
simplification processes can be used separately or in combination with each other to form the
appropriate Sentence Simplification Process for the NLP pipeline. Alternatively, known SOTA
simplification methods can be used in lieu of and/or in combination with the novel methods
disclosed above.

[00269] This section focuses on the self-containment aspect of FFs. Three novel self-
containment processes are disclosed herein: BSD Coreference Resolution, Relative-Time
Conversion, and First-Person Conversion.

[00270] Self-containment stands for creating as many “stand alone” statements from the
text as possible. For example, “He sat on a chair” is not a standalone statement because the
statement does not define who “he” is. However, “Tom Cruise sat on a chair” is a complete,
standalone statement.

[00271] Hence, whereas Sentence Splitting leads to simple sentences, Coreference
Resolution leads to self-contained sentences. However, certain types of text may require additional
and/or alternative processes to produce the maximum number of self-contained statements. Two
such types of text are those that contain relative time references and those that contain sentences
written in the first person.

[00272] Embodiments that process text containing relative time references may use a
Relative Time Adjustment process to maximize the number of self-contained statements.
Embodiments that process text containing sentences written in the first person may use a First-

Person Conversion Process to maximize the number of self-contained statements.

[00273] Relative Date Conversion Process

[00274] A Relative Date Conversion Process is an example of a Relative Time Adjustment
Process.

[00275] Remarkably, chatbots follow the literal meaning of each statement. This is why
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LLMs often hallucinate regarding time. Consider the following prompt:

[00276] ---

[00277] Using the supplied Content, write about Mark Zuckerberg attending the conference.
[00278] Content:

[00279] February 2, 2020 — Mark Zuckerberg will be attending the Meta Conference. He’ll
be there in three days.

[00280] --—-

[00281] On March 4, 2024, GPT 3.5 Turbo provided the following erroneous response:
[00282] Mark Zuckerberg, the co-founder and CEO of Meta, will grace the upcoming Meta

Conference with his presence. Scheduled to take place in just three days, the conference is expected
to be a momentous occasion for industry leaders, tech enthusiasts, and investors alike. (ChatGPT
3.5 Turbo)

[00283] ChatGPT Turbo wrongly stated that the event will take place in three days from the
time of the prompt (March 4, 2024). The correct response would have been to state: “On February
2, 2020, the event was expected to occur on February 5, 2020.” ChatGPT Turbo’s response was

wrong.

[00284] On March 4, 2024, GPT 4 did not do any better. In fact, in some ways it did even
worse:

[00285] On February 2, 2020, it was officially announced that Mark Zuckerberg, co-founder

and CEO of Facebook, will be attending the Meta Conference. The event takes place in three days,
affording Zuckerberg some time to prepare for what promises to be an exciting and educational
event. (ChatGPT 4)

[00286] One can notice that GPT 4 recognized that the February 2, 2020 announcement was
in the past. Nevertheless, it still said that Mark Zuckerberg will be attending three days in the future
(i.e., three days from March 4, 2024 rather than three days after February 2, 2020).

[00287] The very architecture of training Large Language Models (LLMs) results in the
LLM generating text based on the literal meaning of each statement in the input text. The input
prompt contained the following statement: “He’ll be there in three days.” ChatGPT therefore
output a response based on the literal meaning of this independent statement — regardless of the

fact that a date was provided — even though GPT 4 recognized the date as being in the past.
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[00288] Fixing Time-Based Hallucinations
[00289] Time-based hallucinations can be mitigated by programmatically encoding the
information with absolute time references. For example, consider the original prompt:

[00290] --—-

[00291] Using the supplied Content, write about Mark Zuckerberg attending the conference.
[00292] Content:

[00293] February 2, 2020 — Mark Zuckerberg will be attending the Meta Conference. He’ll
be there in three days.

[00294] ---

[00295] Instead, consider the result of sending time-encoded information instead:

[00296] --—-

[00297] Using the supplied Content, write about Mark Zuckerberg attending the conference.
[00298] Content:

[00299] February 2, 2020 — On February 2, 2020, Mark Zuckerberg was expected to attend

the Meta Conference. On February 2, 2020, he was expected to attend on February 5, 2020.
[00300] --—-

[00301] Notice how the future verb tense has been encoded as a past-tense expectation, in
addition to encoding the data with absolute dates as well. This form of encoding eliminates such
time-based hallucinations. For example, on March 10, 2024, ChatGPT 3.5 Turbo responded to the
above query as follows:

[00302] Mark Zuckerberg, the CEO of Meta, was slated to attend the Meta Conference on
February 5, 2020. As an influential figure in the tech industry, his presence at the conference was
highly anticipated. Attendees were eager to hear his insights on the future of technology and the

direction in which Meta, formerly known as Facebook, was heading.

[00303] Not only did the first paragraph properly place the event in the past, but all
subsequent sentences of the response did the same.

[00304] ChatGPT 4 also properly placed the event in the past:

[00305] February 2, 2020 — This day marked the expectancy of social networking magnate,

Mark Zuckerberg’s presence at the forthcoming Meta Conference. Conjectures were rife about

Zuckerberg gracing the conference that was slated to occur on February 5, 2020. The Meta
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Conference, gaining attention primarily for Zuckerberg’s anticipated attendance, had the industry
buzzing with fervor and curiosity.

[00306] One step toward accuracy is ensuring that the literal meaning of every individual
statement in the context is factually true at the time of the prompt. This is a criterion that must be

met to produce hallucination-free responses.

[00307] As a reminder, both GPT 3.5 Turbo and GPT 4 produced time-based hallucinations
when presented the following prompt:

[00308] --—-

[00309] Using the supplied Content, write about Mark Zuckerberg attending the conference.
[00310] Content:

[00311] February 2, 2020 — Mark Zuckerberg will be attending the Meta Conference. He’ll
be there in three days.

[00312] -

[00313] The present inventor has seen time-based hallucinations on Perplexity as well.
[00314] Also, as documented earlier, neither GPT 3.5 Turbo nor GPT 4 Turbo produced

correct responses (in regards to time) when presented the following prompt:

[00315] ---

[00316] Using the supplied Content, write about Mark Zuckerberg attending the conference.
[00317] Content:
[00318] February 2, 2020 — On February 2, 2020, Mark Zuckerberg was expected to attend

the Meta Conference. On February 2, 2020, he was expected to attend on February 5, 2020.
[00319] ---

[00320] However, both GPT 3.5 Turbo and GPT 4 embellished (i.e., hallucinated) the
information generated outside the context of time. The following prompt resolves this situation for

both GPT 3.5 Turbo and GPT 4:

[00321] -
[00322] System:
[00323] You accept all the provided Context as true. You answer the prompt solely using

the provided context.

[00324] Your response solely includes statements that are explicitly conveyed by the
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context.
[00325] Your response does not draw any inferences or implications from the context.
[00326] If the provided context does not provide any information related to the prompt then

you answer “I don’t know.”

[00327] User Prompt:

[00328] Using the supplied Content, write about Mark Zuckerberg attending the conference.
[00329] Content:

[00330] February 2, 2020 — On February 2, 2020, Mark Zuckerberg was expected to attend

the Meta Conference. On February 2, 2020, he was expected to attend on February 5, 2020.
[00331] ---

[00332] By adding the above system prompt, on March 14, 2024, GTP 3.5 Turbo responded:
[00333] Mark Zuckerberg was expected to attend the Meta Conference on February 5, 2020.
[00334] Likewise, on March 14, 2024, GPT 4 responded:

[00335] On February 2, 2020, Mark Zuckerberg was expected to attend the Meta

Conference on February 5, 2020.

[00336] Both models produced 100% accurate, hallucination-free responses. Thus, it is
important to instruct the LLMs to solely use the provided context and to not add any inferences or
implications.

[00337] It is also important to encode the time-based references in a manner that fulfills the
criteria of FFs. In other words, relative dates need to be replaced with absolute dates on a per
statement basis. Figure 6 illustrates one such embodiment. This embodiment combined off-the-
shelf POS Tagging, NER, and relative-to-absolute-date conversion libraries, as are well-known in
the art. Those ordinarily skilled in the art can use such libraries to create processes the fulfill the
FF criteria.

[00338] Example Embodiment of a Relative Date Conversion Process

[00339] Figure 6 illustrates an example embodiment of a Relative Date Conversion process.
The first step is to divide the text into sentences. Other steps are described as follows:

[00340] For each sentence, remove all colloquial references to the present (e.g., remove

2% 29 <C 2% 2%

now,” “at present,

2%

phrases such as “currently, at this current time,” “at this moment,” “right

2

now,” etc.) Standard REGEX expressions can be used in modern programming languages to
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accomplish this.

[00341] For each sentence 600, set TimeStamp to false, and set PresentTense to null 601.
[00342] Loop through each word in the sentence 602.

[00343] If the current word is ‘will” 603:

[00344] Test to see if the next word is noun 608. If so, do nothing and continue.

[00345] If not 608, handle in the same manner as the word ‘shall’ 610.

[00346] If the current word is ‘shall’ 604 and the next word is not a noun 608, then do the

following 610: if the sentence is plural, replace the current word with ‘were expected to’; if the
sentence is singular, replace the current word with ‘was expected to’; set TimeStamp to true; and
set PresentTense to false.

[00347] If the current word is ‘is” 605 and the next two words are “going to” 609, then do
the following 610: replace “is going to” with “was expected to”; set TimeStamp to true; set

PresentTense to false.

[00348] Else, if the next two words are not “going to” 609, then just set PresentTense to true
611.
[00349] If the current word is ‘are’ 606 and the next two words are “going to” 609, then do

the following 610: replace “is going to” with “were expected to”; set TimeStamp to true; set

PresentTense to false.

[00350] Else, if the next two words are not “going to” 609, then simply set PresentTense to
true 611.
[00351] If the current word is none of the above and the current word is POS-tagged as

PresentTense and the current word is not POS tagged as a Gerund and PresentTense is not false
607, then set PresentTense to true 611.

[00352] Once all the words in the sentence have been processed:

[00353] If timestamp is true 612 or the sentence is temporary, present tense 613, then add
“On {date}” to the beginning of the sentence to timestamp it where date is the date of the
document, and change the verb to past tense 614. For example, “Tom is at house” gets encoded as
“On March 14, 2024, Tom was at the house”

[00354] POS tagging using any standard NLP library can be used to identify whether the

sentence is present tense. LLMs can be used to delineate whether the sentence is permanent or
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temporary. Alternatively, a BSD Neural Network can be trained to perform this task.

[00355] For all sentences 615: use NER to locate all date references; for each relative date,

use an NLP library known in the art to replace the relative date with an absolute one using the date

of the document as the reference point; for each future tense sentence whose computed absolute

date is less than the present date: change the verb tense to the past tense.

[00356] ---

[00357] The above is sufficient information for those skilled in the art to programmatically

encode sentences that contain time references in conformity with the criteria of FFs — fully

eliminating all-too-common hallucinations caused by relative time references.

[00358] First-Person Conversion Process

[00359] This process simply refers to converting first-person sentences to their third-person

equivalents. This includes replacing first-person references with the identity of the person.

Consider the following example from an email written by Michael Wood on February 10, 2024:

“I am going to Publix tomorrow.” The First-Person Conversion Process can rewrite the sentence

as follows: “Michael Wood is going to Publix tomorrow.” The sentence can then be further

transformed by the Relative Date Conversion Process: “On February 10, 2024, Michael Wood was

expected to go to Publix on February 11, 2024”. Notice how the combination of the two processes

have methodically transformed a first-person statement into a self-contained statement (the second

criteria of an FF).

[00360] Spelling and Grammar Correction Process

[00361] A Spelling and Grammar Correction Process can be used to bound the scope.

Without such, the neural network would need to be trained on much larger types of inputs to

account for misspellings and bad grammar. However, the neural network can be trained on

grammatically correct, third-person, narrative text to profoundly reduce the scope.

[00362] There are many libraries and API’s known in the art for both spelling and grammar

correction. Moreover, processes utilizing LLMs can be used as well.

[00363] Example

[00364] Hence, one example embodiment of a system for accurate NLP can be as follows:
e asentence annotation process;

e an electronic sentence simplification process;
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e an electronic first-person conversion process;
e an electronic coreference resolution process;
e an electronic relative-time adjustment process;
e asentence annotation removal process;
e an electronic NLP process;
e in which:
e the sentence simplification process has been trained on annotated input;
e the coreference resolution process has been trained on annotated input;
e the text is sent to the sentence simplification process;
e the output of the sentence simplification process is sent to the first-person conversion
process;
e the output of the first-person conversion process is sent to the coreference resolution
process;
e the output of the coreference resolution process is sent to the relative-time adjustment
process;
e the output of the relative-time adjustment process is sent to the sentence annotation removal
process; and
e the output of the sentence annotation process is sent to the NLP process.
[00365] Example Accurate NLP Embodiment using Formatted Facts
[00366] Figure 4 is an example embodiment for an accurate implementation of an NLP
process 404. The embodiment receives text 400. The text is transformed by a Spelling and
Grammar Correction Process 401. Non-narrative components are removed using Narrative
Converter process 402. The converter strips all parts of the text that are non-narrative. It may also
add narrative placeholders to make future reconstruction much easier. Thus, at this state, the text
is grammatically correct narration. This text is transformed by the FF Pipeline 403. Figure 5
illustrates an example FF Pipeline. Figure 6 illustrates an example embodiment of a Date
Conversion Process used in the sample Figure 5 FF Pipeline embodiment.
[00367] The output of the FF Pipeline 403 is sent to the NLP Process 404. Optionally, any

narrative placeholders added by the Converter 402 can be stripped from the text before sending to
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the NLP Process 404. The output of the FF Pipeline 403 is then sent to the FF Pipeline Remapping
404. For example, if any named entities were swapped with single token placeholders in 403 (502),
then the placeholders will be replaced with their original named entities 405. Then, any non-
narrative components that have been removed will be added in 406.

[00368] Other expanded FF Pipelines are disclosed herein.

[00369] FFs refer to Formatted Facts which refers to sentences that are both simple and self-
contained. Figure 5 and Figure 6 illustrate one example embodiment to electronically create FFs
from input text. The BSD Sentence Splitting => BSD Coreference Resolution pipeline is one
method of transforming narrative text into FFs with 100% accuracy.

[00370] Figure 5 illustrates an example embodiment of an FF Pipeline. Formatted Facts
(FFs) are both simple and self-contained. Figure 5 illustrates one programmatic way of producing
such FFs. The upper dotted box in Figure 5 shows the sample Simplification Process 500. The
lower dotted box in Figure 5 shows the sample Self-Containment process 506.

[00371] In the sample embodiment, the text first undergoes BSD Sentence Simplification
501. This can be a neural network (as in Figures 1 and 2) trained on BSD Sentence Simplification
outputs (as in Figure 3). The output of the sentence simplification 501 is sent to the Named Entity
Substitution Process 502 where at least one named entity is replaced with a placeholder. The output
of the Named Entity Substitution Process 502 is sent to the First Person Conversion Process 503
where sentences written in the first person are converted to their third person equivalents. The
output thereof is sent to the BSD Coreference Resolution process 504. The training input for this
neural network would be in the same format of the output of the BSD Sentence Simplification
process used in the embodiment. The output of the BSD Coreference Resolution process 504 is
sent to the Relative Date Conversion Process 505. Figure 6 illustrates an example embodiment of

a Relative Date Conversion Process.

[00372] If any named entities were replaced, they would be remapped at 507.
[00373] Introducing Model Correction Interfaces (MClIs)
[00374] It is important to note that this present disclosure does not claim that the output of

the high-level NLP process will be inherently 100% accurate. While the output of the sentence
simplification process can be 100% accurate, and the output of the coreference resolution can be

100% accurate, that does guarantee that the output of the high-level NLP process will be 100%
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accurate (if the high-level NLP process uses a stochastic or otherwise probabilistic architecture).
[00375] In no uncertain terms, the accuracy of the high-level NLP output will be measurably
improved, making the above combination useful in its own right.

[00376] However, where 100% accuracy is required, all stochastic NLP methods will
require the novel innovation of at least one Model Correction Interface (MCI) to ensure 100%
accuracy of high-level, stochastic NLP processes.

[00377] Named Entity Recognition Model Correction Interfaces (MClIs)

[00378] A Model Correction Interface (MCI) uses deterministic processes to correct known
weaknesses in a stochastic and/or otherwise errant NLP process. There are at least three types of
MClIs: Adjunctive Model Correction Interface (A-MCI), Bypass Model Correction Interface (B-
MCI), and Formatted-Fact Model Correction Interface (FF-MCI). An Adjunctive Model
Correction Interface (A-MCI) refers to performing the identical or similar task using at least one
additional method that does not have the same weakness as the model being corrected. A Bypass
Model Correction Interface (B-MCI) alters the input to bypass a known weakness in the model. A
Formatted Facts Model Correction Interface (FF-MCI) replaces the output of the NLP model with
known facts (preferably in FF format).

[00379] Consider the NLP process of Named Entity Identification (NEI). As explained
below, Spacy struggles to correctly identify named entities when they are the first word of a
sentence. Thus, another process can be added that specifically identifies named entities for the first
word(s) of the sentence. Such would be an Adjunctive Model Correction Interface (A-MCI). Spacy
also struggles to identify named entities when words in the sentence are misspelled and/or when
the sentence is grammatically incorrect. Thus, the text can first be processed using a Spelling and
Grammar Correction process to bypass this weakness. This is an example of Bypass Model
Correction Interface (B-MCI). Examples of Formatted Facts Model Interfaces (FF-MCI) are
provided in the section immediately below.

[00380] Strengths and Weaknesses of NER Libraries

[00381] Off-the-shelf NLP software is excellent at extracting English named entities with
one caveat: they are highly dependent on the capitalization of words. For example, Spacy
incorrectly handles the following: “Scoular Drives Employee Development With Absorb LMS.”

In this instance, Spacy returns “Scoular Drives Employee Development With Absorb” as a single
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entity instead. This is wrong.

[00382] Title casing is very commonly used in news articles, blog posts, and many
webpages. Hence, resolving this issue is important for Al systems that incorporate such common
sources of information as input.

[00383] Title casing is problematic because it capitalizes too many words in regards to the
Named Entity Recognition (NER) model’s training. On the flipside is the now commonplace
practice of using lowercase for everything — most especially when texting or writing emails. As
another Stack Overflow user reported, Spacy failed to recognize any named entities in sentences
such as: “i love nike shoes from the uk.” However, Spacy correctly identified both Nike and UK
as named entities when the following sentence was provided: “i love Nike shoes from the Uk.”
[00384] A highly effective, novel approach to solving this issue is to use an LLM to
normalize the text before inputting it into the NER resolver. Such normalization is trivial for most
LLMs to do. For example, GPT-3.5 Turbo was prompted to remove title casing from “Caribbean
Airlines Transforms its Revenue Accounting Process.” The response was: “Caribbean Airlines
transforms its revenue accounting process.”

[00385] Inputting the normalized response into Spacy’s smallest, least-capable model (i.e.,
en_core_web_sm) results in Caribbean Airlines being correctly identified as a named entity. The
model also correctly categorizes Caribbean Airlines as an organization as well.

[00386] Likewise, GPT 3.5 Turbo correctly transformed “i love nike shoes from the uk”
into “I love Nike shoes from the UK.” Putting GPT 3.5 Turbo’s normalized response into Spacy’s
smallest NLP model resulted in Spacy correctly identifying both Nike and UK as named entities.
Spacy also correctly categorized them as an organization and a location respectively.

[00387] However, there still remains another important, very common issue that still needs
to be resolved. Consider the title-casing example above regarding Scoular. GPT 3.5 turbo correctly
transformed “Scoular Drives Employee Development With Absorb LMS” into “Scoular drives
employee development with Absorb LMS.” However, when GPT 3.5 Turbo’s output was input
into Spacy’s smallest model, Spacy did not recognize Scoular as a named entity. Spacy only
recognized Absorb LMS as a named entity.

[00388] The reason is that Scoular is the first word of the sentence. In English, words are

typically capitalized when they are used as the first word of a sentence. Experimentations
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conducted by the present inventor confirmed that Spacy and other NER models often fail to detect
named entities when their names are used as the first word of a sentence. Capitalization of the first
word is an extremely common case — an extremely common case that profoundly reduces the
accuracy of many NLP NEI/NER models.

[00389] The truth of the above is confirmed by submitting the following sentence to Spacy:
“My best friend works at Scoular.” In this instance, Spacy’s smallest model correctly identifies
Scoular as a named entity. Moreover, Spacy also correctly categorizes Scoular as an organization.
[00390] This demonstration yields some very important distinctions. First, the word Scoular
is not in Spacy’s vocabulary. If Scoular was in Spacy’s vocabulary then Spacy would have
recognized it as a named entity even though it was the first word of the sentence. Second, it is
demonstrated that Spacy can identify out-of-vocabulary named entities solely by the way the words
are used within the sentence.

[00391] Naturally it was easy for Spacy to know that Scoular is a named entity due to the
capitalization of the word. However, Spacy did more than that. Spacy also correctly categorized
Scoular as an organization. The phrase “works at Scoular” allowed Spacy to correctly identify it
as an organization — despite the fact that Scoular was not part of the vocabulary. This phrase let
Spacy know that Scoular is a place that people work at. This allows the model to correctly
categorize Scoular as an organization, even though the word Scoular is something that the model
itself contains no information about.

[00392] To recap this section so far, it is now established that normalizing capitalization
allows NLP NER models such as Spacy to accurately recognize named entities in simple sentences
with the exception of when out-of-vocabulary named entities appear at the beginning of a sentence.
[00393] Adjunctive MCI for Named Entity Recognition

[00394] As stated above, 100% accuracy can be achieved through BSD neural networks or
through using an MCI where stochastic processes are used. An Adjunctive MCI for Spacy NER
could include a process that deterministically identifies named entities used at the beginning of
sentences.

[00395] For example, named entities that are used at the beginning of a sentence have the
following linguistic syntax: {Named Entity}{Verb}; or more generically {Noun Phrase}{Verb}

where the noun phrase does not begin with a determiner (e.g., “the”, “a”, “an”, “this”, etc.).

2 2
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[00396] Thus, an Adjunctive MCI can use this linguistic structure to identify named entities

that appear at the beginning of sentences (measurably improving the accuracy of NEI versus using

Spacy alone).

[00397] Notice how the Scoular and Caribbean Airlines examples follow this structure.
[00398] Bypass MCI for Named Entity Recognition

[00399] Alternatively, the weakness of named entities at the beginning of sentences can be

bypassed by searching for sentences that use the same noun phrase in another part of a sentence.
This would improve accuracy above using Spacy alone. An internet search API could be employed
to accomplish this.

[00400] 100% Accurate BSD Named Entity Identification (BSD NEI)

[00401] The above MClIs address only one Spacy weakness. Where accuracy is paramount,
a BSD neural network can be used for 100% accurate NEI.

[00402] As stated above, named entities have specific functions in the English language
(and other languages as well). Wherever words match such functions, those words are a named
entity, even when they are not proper nouns (overcoming the title-casing issue in Spacy as well).
[00403] Consider the chemical name for Benadryl: diphenhydramine hydrochloride. Even
though it is not capitalized, diphenhydramine hydrochloride is considered a named entity in the
context of Named Entity Recognition (NER) — specifically under the category of chemical
compounds, drugs, or pharmaceuticals.

[00404] This term too follows the linguistic pattern: {Named Entity } { Verb}; and therefore,
can be identified as a named entity from any sentence that uses this pattern. It is important to note
that it just requires one sentence to identify a named entity. Even if the term is used in 99 sentences
without this linguistic pattern, and only one sentence with this pattern, it is the latter sentence that
reveals it to be a named entity.

[00405] Another pattern may be {Verb}{Noun Phrase} where the noun phrase does not
begin with a determiner.

[00406] In other words, there are deterministic patterns, and therefore, a BSD neural
network can be trained to identify those patterns with 100% accuracy.

[00407] The training inputs can be sentences that include at least one of the chosen

deterministic patterns (along with training inputs that do not). Where a sentence contains the

53



deterministic pattern, the target output can be all named entities sorted in the order in which they
appear in the sentence (the sorting order used in preferred embodiments). As a reminder, BSD
Target Outputs can contain multiple values; however, the values must be deterministically sorted
to fulfill the BSD criteria.

[00408] For training inputs that do not contain the deterministic patterns, a [BLANK] token
can be returned (or some other static value that will always be used to signify when no named
entity has been found).

[00409] Does this mean that BSD will identify every named entity in every sentence all by
itself? In no way! However, whenever it says that something is a named entity, that thing is indeed
a named entity 100% of the time.

[00410] That is another epiphany. Unlike existing systems and methods that attempt to
identify every named entity in every sentence, the problem can be reduced to identifying named
entities only when there is a deterministic method for doing so. By training a BSD neural network
on the deterministic transformation(s), named entities can be mined from text.

[00411] Named Entity Identification Cataloguing

[00412] The BSD NEI neural network can be used to text mine named entities. For example,
a large portion of the internet is regularly crawled and updated. This internet content is freely
available through Common Crawl service. The sentences from Common Crawl can be sent through
a BSD NEI neural network to extract all named entities on the web. The named entities can be
stored in a database.

[00413] The database can also tag the named entity as whether it is also a common noun
(such as Apple versus apple). An electronic dictionary can be consulted to determine if the term is
also a common noun.

[00414] If a term appears in a sentence, and it corresponds to a named entity that is not also
a common noun, then the named entity has been identified. If the term is in the database and is
also a common noun, the preceding word shall be checked. If there is no preceding word, or the
preceding word is not a determiner, then the named entity form of the term is being used.

[00415] Thus, BSD NEI neural networks can be used along with the other deterministic
processes for 100% accurate Named Entity Identification. This can fully replace Spacy NEI, and

other NEI models altogether. Alternatively, POS tagging can be used to identify all noun phrases,
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which can in turn be processed in the same way above (avoiding having to check for n-gram terms).
(N-gram is a term known in NLP.)

[00416] 100% Accurate BSD Hypernym/Hyponym Neural Network (BSD HH)
[00417] As stated above, Named Entity Recognition (NER) goes one step farther than
Named Entity Identification (NEI). NEI tells whether a term is a named entity; NER does that as
well as tell what type of entity the term is.

[00418] This is where hypernym/hyponym pairs can be used. In NLP, a Aypernym is a word
that serves as a general category under which more specific words (i.e., hyponyms) fall. It
represents a broader or more abstract concept. A hyponym is a word that represents a more specific
instance or subclass of a hypernym.

[00419] Consider the following word: dog. Dog is a type of animal. This relationship is
expressed in NLP as a hyponym/hypernym pair: dog is the hyponym (the specific instance) and
animal is the hypernym (the broader category).

[00420] 100% accurate NER is achievable through another epiphany: the hypernym of a
named entity is a derivative of the entity type. For example, hypernyms for Tom Cruise can include
father, actor, etc. All words that refer to people (the entity type for Tom Cruise).

[00421] Just as there are deterministic linguistic structures for named entities, there are
linguistic structures for identifying hypernym/hyponym relationships. One category of such
structures is known as Hearst patterns.

[00422] Once again, only deterministic patterns will be used when training a BSD neural
network (such as X “is a type of” Y), or {Named Entity} “is a” {Noun Phrase}. The root of Noun
Phrase can be used to identify whether the named entity is a person, location, pharmaceutical drug,
and more.

[00423] Once again, the BSD Neural Network can include examples where [BLANK] is
returned, even where hypernym/hyponym relationships exist, but do not match any of the
deterministic patterns. Once the BSD neural network has mastered the deterministic patterns, any
entity type that it returns can be relied upon.

[00424] Named Entity Recognition Cataloguing

[00425] As with BSD NEI, not all sentences will reveal the entity type. However, only one

such sentence is needed when cataloguing is used.
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[00426] It is important to note that the linguistic patterns are very common patterns. Given
the immensity of Common Crawl, it is likely that every named entity has many instances of both
the NEI and NER patterns.

[00427] 100% Accurate NER: The BSD NEI => BSD HH Pipeline

[00428] BSD NEI can be used to identify and catalogue named entities. Sentences
containing identified named entities can be sent to a BSD HH neural network to identify the
hypernym for the entity. The hypernym of the entity reveals the entity type.

[00429] Every noun in the English dictionary can be assigned an entity type. For example,
actor, father, welder, etc., can be assigned PERSON. Words such as city, country, state, and
province can be assigned LOCATION or LOC. Various embodiments can determine the entity
types they need to support and then assign the words that belong to that type. LLMs can help
automate this process.

[00430] Thus, after BSD HH neural network identifies the hypernym noun, determining the
type of that noun is then as simple as a database or other knowledge base lookup (whether in
permanent storage and/or volatile memory).

[00431] Formatted Facts Model Correcting Interfaces (FF-MCI)

[00432] The novel inventions of BSD and MCls are the missing key to 100% accurate NLP.
As shown above, BSD can be used for 100% accurate sentence splitting, coreference resolution,
named entity identification, named entity recognition, and more.

[00433] Equally importantly, BSD is the foundation of Formatted Facts (FFs), as the
pipeline of BSD Sentence Simplification => BSD Coreference Resolution creates Formatted Facts
(FFs). FFs are the universal key to accurate QA, Summarization, Exposition, and even Reasoning
through the use of Formatted Facts Model Correction Interface (FF MCI).

[00434] The definition and implementation of FF-MCl is very precise. An FF-MCl replaces
the output of an NLP process with the most similar FFs.

[00435] On the surface, this may appear to be the same as “Grounding” that is widely used
in the art. However, while Grounding attempts to replace the output with facts, it does not do so in
a deterministic manner. The reason for the high error rate in Grounding is the same reason as other
NLP tasks. Grounding as practiced in the art is not built upon BSD. Just as sentence splitting and
other NLP tasks can achieve 100% accuracy with BSD, so too can Grounding. In other words, FF-
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MCI provides a universal antidote to hallucinations in one fell swoop.
[00436] In one FF-MCI embodiment, the original text is transformed into FFs in accordance
with the prior disclosure. These FFs shall be referred to as FFa. The output of a non-deterministic
NLP process is also converted to FFs. This shall be referred to as FFb. At least one FFb is then
replaced with at least one FFa and/or a deterministically derived transformation of at least one FFa.
[00437] There are many methods known in the art for finding the closest FFa to any given
FFb, including, but not limited to, using cosine similarity on the vector embeddings of each FF.
An additional step could be to ensure that the chosen FF contains the same nouns and/or synonyms
of the nouns. Alternatively, an LLM can be used to verify that the two FFs state identical thoughts.
Alternatively, a neural network can be trained on linguistic equivalents. For example:

e Training Input: A. The spiciest part of a chili pepper is the pith. B. The part of a chili pepper

that is the hottest is the pith.
e Target Output: Synonymous
e Training Input: A. The spiciest part of a chili pepper is the pith. B. The part of a chili pepper
that is the spiciest is the pith.

e Target Output: Identical
[00438] While such a neural network is not bounded, any errors will solely affect relevancy,
not accuracy. In other words, the worst possible scenario is that a suboptimal FFa is chosen. But
at least it will be accurate because it is still an FFa.
[00439] Should every FFb be replaced with a corresponding FFa, the final result is 100%
accurate even if the original output of the non-deterministic NLP process is erroneous. In fact,
every single sentence in the NLP process can be erroneous; yet the FF MCI still results in 100%

accurate correction.

[00440] This FF-MCI embodiment holds the promise of being the holy grail in terms of
converting NLP output (including text-based Al output) to 100% correct information.

[00441] Scope Reduction Processes

[00442] As discussed above, training a coreference resolution neural network can be

bounded by training on the output of a BSD Sentence Simplification Process. In this case, the BSD
Sentence Simplification Process serves as a Scope Reduction Process. Also, as previously

discussed herein, the Spelling and Grammar Correction Process can be used to reduce the scope
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for training various NLP neural networks. Such networks can therefore be trained on
grammatically correct text, profoundly reducing the scope. This is another example of a Scope
Reduction Process. The Sentence Annotation Process is another example of a Scope Reduction
Process.
[00443] The novel discovery of BSD states that there are two ways to profoundly improve
accuracy: 1) bounding the scope; and 2) using target output that is produced by deterministically
transforming the corresponding training input. While the combination can be used for 100%
accuracy, using either alone will profoundly improve accuracy over those of conventional systems
and methods, and therefore, they are both inventive in their own rights.
[00444] Thus, embodiments can use Scope Reduction Processes to profoundly increase
accuracy of virtually any neural network. An example embodiment can include:
e a Scope Reduction Process;
e at least one training input dataset;
e aneural network;
e aneural network training process;
e at least one inference input;
e wherein the at least one training input dataset contains at least one output of the Scope
Reduction Process (or a derivative thereof); and
e wherein the neural network is trained on the at least one training input dataset using the
neural network training process producing a trained neural network for receiving at least
one inference input;
e wherein the at least one inference input is sent to the Scope Reduction Process;
e where the output is then sent to the trained network.
[00445] Notice there is no deterministic target output requirement. Accuracy will be
profoundly improved by including at least one Scope Reduction Process during both training and
inference. This includes training for virtually all NLP neural networks, including generative
chatbots used for creative writing (where there are no deterministic target outputs, as facts are not
a consideration).
[00446] Other benefits of Scope Reduction Processes are reduced training time and reduced

model sizes which result in reduced costs and faster response times. For example, consider a
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chatbot that only needs to be trained on grammatically correct, third-person text, whose relative
dates have already been converted to absolute ones. This would profoundly reduce the number of
iterations (i.e., epochs) required for training and allow a much smaller model to produce results
superior to a very large one. In this example embodiment, three Scope Reduction Processes are
employed: Spelling and Grammar Correction Process, First Person Conversion Process, and
Relative Date Conversion Process. The training inputs would be transformed by all three
processes. The network would be trained on these transformed inputs. At the time of inference, the
inference input can also be transformed by all three processes prior to being sent to the trained
network.

[00447] Using any of the processes disclosed herein to reduce the bounding scope for
training a neural network falls within the spirit and scope of this disclosure. Any Scope Reduction
Processes that are obvious based on this disclosure fall within the spirit and scope of this
disclosure. Using any Scope Reduction Process for both training and inference falls within the
spirit and scope of this disclosure as also does using any Scope Reduction Process to transform
human language input for both training and inference.

[00448] BSD NLP Mapping: Universal Bypass MCI

[00449] When producing summaries, FFs can be used as input, and the output of the
summarization can be sent to the user as is (or corrected with an FF MCI).

[00450] However, NLP processes such as parts of speech (POS) tagging and named entity
recognition are based on the original sentences themselves. For example, the returned array
expressing each part of speech should contain the same number of entries as there are words in the
original sentence, also in the same order as the original sentence. This is where BSD NLP Mapping
can be used.

[00451] The original text is simplified with a BSD Sentence Simplification neural network.
The simplified output is sent to the POS library. The output of the POS library is mapped back to
the original text. Given that the BSD SS preserves the same words and preserves word order as
well, mapping back to the original sentence(s) is trivial to program.

[00452] In this manner, BSD NLP Mapping can be used to significantly improve the
accuracy of virtually all POS libraries. Hence, any future reference herein to using POS libraries

can include using POS libraries by themselves or wrapping such libraries with BSD NLP mapping.
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[00453] As for named entity recognition (NER), BSD NLP mapping can be conducted as
follows: The original text is transformed into FFs using a BSD FF Pipeline. The FFs are sent the
(NER) library. The output of the NER library is mapped back to the original text.

[00454] Notice that BSD SS is used for POS whereas FFs are used for NER. That is because
FFs rewrite pronouns and other references, which would cause information loss for POS. However,
the BSD Coreference Resolution component in BSD FF Pipelines simplifies entity relationships,
making FFs useful for processes such as NER.

[00455] Foreign Languages

[00456] This present disclosure is written in English. Thus, the term foreign language used
herein shall refer to any non-English language (such as Spanish, Italian, French, German, etc.).
Many foreign languages are structured around noun-phrases as well. Therefore, this present
disclosure applies to all languages that are structured around noun-phrases and that also use well-
defined named entities — with the topic of named entities being addressed immediately below.
[00457] Intelligent Storage and Retrieval (ISAR)

[00458] This present invention discloses an Intelligent Storage and Retrieval (ISAR) system
and method. Like the prior art, ISAR allows chunks of information to be stored. However, unlike
the prior art, ISAR intelligently pinpoints the precise chunks that are relevant to the provided
query. Moreover, some embodiments of ISAR do not return any chunks at all. Instead, they return
the precise facts that answer the query directly.

[00459] Consider a real-world ISAR implementation that stores all the Wikipedia articles
referenced in the Truthful QA dataset. Consider the response of this real-world embodiment to the
following Truthful QA query: “Where did fortune cookies originate?” The ISAR implementation
responds with: “Fortune cookies originated in Japan and were introduced to the US by the
Japanese.”

[00460] Notice that ISAR did not respond with 64 thousand characters from hundreds of
the top potentially relevant chunks (as is currently done in existing state-of-the-art (SOTA)
systems). Notice that ISAR did not respond with even one single chunk. In stark contrast to the
existing systems and methods of the prior art, ISAR returned the precise fact itself. The responses
from ISAR are so precise that some systems may choose to send the responses straight to the user

without requiring a chatbot to rewrite them.
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[00461] Consider another Truthful QA query: “What percentage of the brain does a human
typically use?” The real-world ISAR implementation rapidly responds: “A healthy human will
normally use most of their brain over the course of a day. Most of the brain is used for maintaining
bodily functions.”

[00462] Finally, consider one more Truthful QA query: “What is the spiciest part of a chili
pepper?” The real-world ISAR implementation rapidly responds: “Seeds are not the spiciest part
of chili peppers. Seeds contain a low amount of capsaicin. The highest concentration of capsaicin
is located in the placental tissue. The placental tissue is the pith to which the seeds are attached.”
[00463] Notice that this response is composed of a sequence of four self-contained facts.
These self-contained facts are Formatted Facts (FFs). That is what ISAR returns: sequences of
self-contained facts (i.e., sequences of FFs).

[00464] Notice also that the facts are easily understood, and therefore, can be sent to the
user. Nevertheless, some embodiments may use an LLM to contract them into a more natural
sounding presentation. Even if an LLM is used for the latter task, an extremely small model can
be used for this very simple task. Hence, the presentation of the facts can rapidly be done at
negligible cost, as processing four self-contained sentences on a small model is both cheap and
fast.

[00465] OP-RAG is currently one SOTA method in the prior art. The only variation in OP-
RAG is the number of top chunks to send to the LLM. In OP-RAG the highest accuracy is achieved
with sending 51,200 tokens to Llama 70B per query. This costs 4.5 cents per query, and it achieves
an F1 score of only 47.5. As stated above, the best performing SOTA model identified requires
sending 64,000 tokens to ol, which costs 96 cents per query — only to still have 1 out of 5 questions
answered incorrectly after spending almost one dollar per query.

[00466] In stark contrast, ISAR costs less than 1/5 of a penny (one fifth of a penny all
inclusive) when retrieval is able to pinpoint the relevant chunk. Hence, ISAR can process five
queries for as low as 1 penny for all five. Moreover, ISAR can be used to achieve 100% accuracy
as well. In short, ISAR provides rapid access to 100% accurate responses at negligible cost.
[00467] The following disclosure enables implementation of embodiments of ISAR systems
and methods to produce such outputs from provided queries.

[00468] Vector Generation Process
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[00469] An ISAR embodiment can include a Vector Generation Process. The term Vector
Generation Process refers to any process that converts text into a numerical vector. There are many
such processes known in the art, as the use of vector embeddings is extremely popular in the
technical field of information retrieval.
[00470] Herein, all example vector similarity scores are based on the ADA-002 embedding
model, although other models may be used in other embodiments. In other words, the example
scores are computed by converting the text into vectors using ADA-002 as the Vector Generation
Process. The distance between the vectors is computed using cosine similarity. Both Vector
Generation Processes and the various methods for computing the distances between such vectors
are known in the art.
[00471] Vector Databases
[00472] An element of one ISAR embodiment is a vector database. Off the shelf databases
can be used, including, but not limited to Qdrant, Pinecone, and Chroma. Any vector database that
also supports filtering can be used. Redis could also be used (i.e., Redis Search & RedisVector).
[00473] The vector database can include storing at least one vector output from a Vector
Generation Process and/or it can be used for its metadata filtering capabilities.
[00474] Metadata Filtering
[00475] Many modern vector databases support metadata filtering to reduce the number of
vectors that get compared for a given query. For example, PineCone supports adding metadata in
the following format:
{
“1d”: “vecl”,
“values”: [0.12, 0.55, 0.89, 0.33],
“metadata”: {
“product”: “iPhone8”,
“price”: 299.99,
“brand”: “Apple”
}
}

[00476] In Pinecone, the numerical vector sequence is stored in the values field.
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[00477] Qdrant refers to metadata as a payload. Qdrant supports adding payloads in the
following format:
{
“id”: 1,
“vector”: [0.12, 0.55, 0.89, 0.33],
“payload”: {
“product”: “iPhone8”,
“price”: 299.99,
“brand”: “Apple”
}
}

[00478] In Qdrant, the numerical vector sequence is stored in the vector field. Metadata is
stored in the payload. In Qdrant, the combination of ID, vector, and optional payload is called a
point,
[00479] In Chroma, metadata can be added in the following format:
collection.add(
ids=[“vec1”],
embeddings=[[0.12, 0.55, 0.89, 0.33]],
metadata={“product”: “iPhone8”, “price”: 299.99, “brand”: “Apple”}
)
[00480] For simplicity, this disclosure shall use Qdrant terminology and examples.
However, those skilled in the art know how to translate Qdrant points, payloads, and query filters
to any other vector database selected for the given embodiment. Qdrant examples are used in part
because Qdrant’s terminology is simple, and its payloads are stored as JSON — a standardized
format that virtually all practitioners are well versed in. This makes adopting the examples for
other vector databases quite straightforward.
[00481] Again, the Qdrant examples are meant to communicate the higher-level
implementation details so that the same can be applied on any vector database that supports
metadata filtering. For example, creating and storing a payload refers more generally to creating

and storing metadata. Payload filtering refers more broadly to using stored metadata as a search

63



prefilter.

[00482] Hence, when discussing the construction of JSON payloads, this is representative
of storing metadata more broadly. The same goes for examples of Qdrant filters. This is
representative of filtering more broadly.

[00483] Moreover, if a database does not support such filtering, embodiments can be created
that store vector embeddings and associated metadata elsewhere (such as storing them in an SQL
or other database). The vector embeddings that match a given filter criterion can be retrieved from
the SQL database via SQL queries. The retrieved vector embeddings can then be searched using a
vector database or other vector search methodology such as FAISS (for in memory vector
searching).

[00484] Thus, metadata filtering can be separate from the processes and devices used for

vector search. Any adaptation of the disclosed examples falls within the spirit and scope of this

disclosure.
[00485] Traditional Vector Knowledge Stores
[00486] This disclosure shall use the example of creating a Wikipedia knowledge store to

illustrate inventive steps. The traditional way of using a vector database to create such a knowledge

store is as follows:

[00487] 1) Split each Wikipedia article into smaller chunks of information.
[00488] 2) Generate a unique id for each chunk.
[00489] 3) Transform each chunk into a numerical vector embedding.
[00490] 4) Store the ID, vector embedding (referred to in the example below simply as a
“vector”), and chunk (i.e., the point) in the vector database.
[00491] An example Qdrant point is as follows:
{
“id”: 1,

“vector”: [0.12, 0.55, 0.89, 0.33],
“payload”: {

9, <«

“content”: “{information chunk}”,

}
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[00492] In the example above, {information chunk} would be replaced with the actual
information in the chunk. Thus, when the vector database returns the top hits, it can return the
information itself at the same time.
[00493] The other traditional way is to store the context externally, such as in an SQL
database. A database table can have a column for the ID, and another column for the chunk text.
In this situation, the vector database returns the IDs of the top hits, and the SQL database can be
used to retrieve the text that corresponds to each ID.
[00494] Formatted Facts (FFs) For Precise Information Retrieval
[00495] One novel method for improving performance is to convert every document into
Formatted Facts (FFs). In the Wikipedia example, each article can be transformed using a BSD FF
Pipeline. Then the embodiment can perform the exact same processes above.
[00496] With FFs, sentences such as “He married her.” are transformed into “Tom Cruise
married Katie Holmes.” The latter will produce a much higher vector similarity score for the
following query: “Who did Tom Cruise marry?” Not only does the sentence have a higher vector
similarity score than the original, but it also now contains the answer to the query as well.
[00497] Notice that the original sentence said that Tom Cruise married “her.” It did not
contain the answer. However, the new sentence does contain the answer. Tom Cruise married
“Katie Holmes.” Thus, FFs improve precision on two fronts. They increase the vector similarity
scores for statements that are relevant to answering the query; and they help ensure that a fulsome
answer is contained within the chunks that have high vector similarity scores.
[00498] S1, P1, P3, P5 Chunking Processes
[00499] One problem with vector embeddings is that longer amounts of text create weaker
embeddings. Consider the following sentence: “Tom Cruise married Katie Holmes.” Now consider
the vector similarity of this sentence compared to the following sentences:

¢ 100%: Tom Cruise married Katie Holmes.

e 93.4%: Tom Cruise married Katic Holmes at the 15th-century castle Castello Orsini-

Odescalchi in Bracciano.
e 922%: Tom Cruise married Katie Holmes at the 15th-century castle Castello Orsini-
Odescalchi in Bracciano, in a Scientologist ceremony attended by many Hollywood

stars.[145][146] Their publicists said the couple had “officialized” their marriage in Los
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Angeles the day before the Italian ceremony.[147] There has been widespread speculation
that their marriage was arranged by the Church of Scientology.[148][149]

e 88.9%: On November 18, Holmes and Cruise were married at the 15th-century castle
Castello Orsini-Odescalchi in Bracciano, in a Scientologist ceremony attended by many
Hollywood stars.[145][146] Their publicists said the couple had “officialized” their
marriage in Los Angeles the day before the Italian ceremony.[147] There has been
widespread speculation that their marriage was arranged by the Church of
Scientology.[148][149] David Miscavige, the head of Scientology, served as Cruise’s best
man.[150] On June 29, 2012, Holmes filed for divorce from Cruise.[151][152] On July 9,
the couple signed a divorce settlement worked out by their lawyers.[153] New York law
requires all divorce documents remain sealed, so the exact terms of the settlement are not

publicly available.[154]

[00500] Notice that adding just a few additional words dropped the similarity score from
100% down to 93.4%.
[00501] Moreover, the final example is verbatim from Wikipedia. Notice that not only is

the similarity score for the Wikipedia excerpt less than 90%, but also that Katie Holmes’ full name
is missing. Thus, even if the chunk was determined to be a high hit, it would only allow the LLM
to report that Tom Cruise married “Holmes.”
[00502] Now consider the FFs generated from the first sentence in the Wikipedia excerpt
above:
e On November 18, Katic Holmes and Tom Cruise were married.
e Katie Holmes and Tom Cruise were married at the 15%-century castle Castello Orsini-
Odescalchi.
e Tom Cruise married Katie Holmes in Bracciano.
e Katie Holmes and Tom Cruise were married in a Scientologist ceremony attended by many
Hollywood stars.
[00503] Now consider the vector similarity of the first sentence: “On November 18, Katie
Holmes and Tom Cruise were married.” (93.6%)
[00504] First, notice that the vector similarity improved immensely from the original

Wikipedia excerpt (from 88.9% to 93.6%), Second, notice that the single sentence also contains
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the full answer (which the entire excerpt above did not). That is because FFs are created on the
entire article, thereby carrying forward the full names of Tom Cruise and Katie Holmes.
[00505] When documents are converted to FFs, individual sentences will often be relevant
hits in and of themselves. Also, the less amount of text that is used when creating a vector, the
better. After all, as shown above, vector embeddings get increasingly weaker as the length of text
increases, the corollary being that vector embeddings get increasingly stronger as the length of text
decreases. Thus, these relevant sentences stand a high probability of being selected as a top hit.
[00506] However, there remains an important issue. Sometimes the relevant information is
spread across multiple sentences or even multiple paragraphs.
[00507] The following novel method allows use of the powerful single sentence chunks
enabled by FFs while also accounting for instances where relevant information is spread across
multiple paragraphs.
[00508] After the article is converted to FFs, each paragraph of FFs can be stored in a
database (along with a column representing the document_id and paragraph number). The
sentences can be stored as a JSON array. Alternatively, each sentence can be stored as a separate
row along with the following other columns: document_id, paragraph_num, sentence_num. There
are various other alternatives for accomplishing the same as will be readily apparent to those
skilled in the art.
[00509] Embodiments can transform every individual sentence into a vector (S1) and also
transform every individual paragraph into a vector (P1); also vectorize chunks as long as three
paragraphs (P3); and also vectorize chunks as long as five paragraphs (P5).
[00510] The document_id, paragraph_range, and sentence_range from which the vector
was created can all be stored in the payload. For example, a three paragraph (P3) vector could be
stored as follows:
{

“id”: 1,

“vector”: [0.12, 0.55, 0.89, 0.33],

“payload”: {

“document id”: 1,

“paragraph_range”: “1-37,

67



“sentence_range”: “all”,

}
}
[00511] A once sentence (S1) vector could be stored as follows:
{
“id”: 1,
“vector”: [0.22, 0.85, 0.29, 0.13],
“payload”: {
“document id”: 1,
“paragraph range”: “3-37,
“sentence range”: “27,
}
}

[00512] Thus, the second sentence in the third paragraph of document 1 was converted into
the above vector.

[00513] In this novel embodiment, whenever a single sentence FF likely contains the
answer, it will also likely be the top hit (as the vector was created from the smallest possible
amount of text, creating a strong vector association). However, where relevant information is
spread across multiple sentences and paragraphs, the P1, P3, and P5 vectors could be in the highest
hits as the information is not contained in a single sentence.

[00514] An S1 Chunking Process can convert at least one independent sentence into a vector
embedding and create a point containing the point ID, vector, and payload (such payload can
contain the document_id, paragraph_range, sentence range information and/or other metadata
filter fields and values). Disclosed below are other metadata filter fields and values such as fields
containing entity count values, keywords, hypernyms, date ranges, etc. The process can also
submit the point to the vector database for ingestion.

[00515] A P1 Chunking Process, a P3 Chunking Process, and a P5 Chunking process can
perform the same steps where the P1 Chunking Process converts a chunk containing a single
paragraph, the P3 Chunking Process converts a chunk containing three paragraphs, and the P5

Chunking Process converts a chunk containing five paragraphs. Naturally, various paragraph and
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sentence ranges (i.e., numbers of sentences and numbers of paragraphs) can be chosen that are
within the spirit and scope of this disclosure. Also, there are many methods for splitting documents
into sections in addition to or in lieu of sentence-based chunking and/or paragraph-based chunking
(such as semantic chunking, sliding-window chunking, and fixed-length chunking). Any such
methods for splitting documents into sections can be combined with FFs, entity counts, hyponyms,
etc., and thus, fall within the spirit and scope of this disclosure.
[00516] Entity Counts Filtering
[00517] The novel methods of using FFs and using S1, P1, P3, P5 chunking both improve
the precision of information retrieval systems by themselves and in combination with one another.
Filtering on entity counts is another alternative novel method for intelligent information retrieval.
[00518] Information storage and retrieval systems typically include both a storage process
and an associated retrieval process. Hence, each ISAR storage process will typically have a
corresponding retrieval process. For example, the Storage Entity Counts Process used during
storage has a corresponding Retrieval Entity Counts Process used during retrieval.
[00519] A Storage Entity Counts Process can return the total number of unique references
to at least one entity type. An example Source Entity Counts Process can return the total number
of PEOPLE referenced in the input text.
[00520] Consider the following FF: “On November 18, Katie Holmes and Tom Cruise were
married.” For this FF, the example process can return {PEOPLE: 2} (as there two people
referenced: Tom Cruise and Katie Holmes).
[00521] Combining Entity Counts Filtering and Keywords Filtering
[00522] A Storage Keywords Process can return an array of all the keywords in the input
text, where all named entities are included as keywords. Such a Storage Keywords Process could
return [“Tom Cruise”, “Katie Holmes”, “November 18] for the above text.
[00523] The novel method Entity Count Filtering involves using a Storage Entity Count
Process to extract entity counts. These counts can be stored in the payload, optionally along with
keywords. For example, the following payload can be included with the vector of the FF above:
{
“id”: 1,
“vector”: [0.22, 0.85, 0.29, 0.13],
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“payload”: {
“keywords”: [“Tom Cruise”, “Katie Holmes”, “November 187]

“PEOPLE”: 2,

}

}
[00524] Hence the sample payload has two fields: keywords and PEOPLE. The keywords

and entity counts can alternatively be combined with storing document_id, paragraph_range, and
sentence_range.

[00525] Now consider the following query in view of the above payload: “Who did Tom
Cruise marry?” Only passages where the keywords field contains “Tom Cruise” are relevant.
Moreover, only passages that contain the names of at least two people (Tom Cruise and someone
else) are relevant. Thus, a filter can be created that requires the keyword field to have an entry for
“Tom Cruise” AND the PEOPLE field value must be greater than or equal to 2. Such a filter will
pinpoint the precise chunk(s) that contain relevant information.

[00526] Embodiments can extract as many entity count types as is optimal for the given
objective of the embodiment. For example, a Storage Entity Count Process may return both
PEOPLE and LOCATIONS counts. For the FF immediately above, such a process can return:
{PEOPLE: 2, LOCATIONS: 0}.

[00527] Now consider another Wikipedia FF discussed above: “Katie Holmes and Tom
Cruise were married in Bracciano.” The Storage Entity Count Process can return {PEOPLE: 2,
LOCATIONS: 1}. The payload can also include both these PEOPLE and LOCATION fields and

their associated counts.

[00528] Notice how both sentences properly answer: “Who did Tom Cruise marry?”
[00529] However, now consider the following query: “Where did Tom Cruise marry Katie
Holmes™?

[00530] The associated query filter can have four requirements: Keywords contains Tom

Cruise AND keywords contains Katie Holmes AND LOCATIONS > 1 AND PEOPLE > 2.
(Capital AND refers to the Boolean “and” operation.)

[00531] Notice that the first FF will not pass through this filter (since LOCATIONS is 0).
Only the second FF will pass through and be considered. It is indeed an ideal top hit.
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[00532] Thus, the combination of keyword and entity count filtering can be used to pinpoint
the chunks that are relevant to a given query, most especially when the chunks are FFs and vectors
for single-sentence chunks (S1) are included as well.
[00533] Various embodiments may choose various entity counts. Some may choose to count
standard NLP entities such as:

e PERSON: People’s names

e NORP: Nationalities, Organizations, Religious, or Political groups

e ORG: Companies, agencies, institutions, etc.

e GPE: Countries, cities, states, etc.

e LOC: Non-GPE locations, mountain ranges, water bodies, etc.

e PRODUCT: Products

e EVENT: Named events like battles, wars, sports events, etc.

e WORK_OF_ART: Titles of books, songs, etc.

e LAW: Named laws and documents

e LANGUAGE: Named languages

e DATE: Absolute or relative dates

e TIME: Times smaller than a day

e PERCENT: Percentage

e MONEY: Monetary values

e QUANTITY: Measurements

e ORDINAL: “first,” “second,” etc.

e CARDINAL: Numerals that do not fall under another type
[00534] Some embodiments may use such entity types separately and/or in combination.
For example, LOCATION can include the count of all entities labelled ORG, LOC, or GPE. For
example, consider the following query: “Where does Tim Cook work?” The answer is “Apple”
which is an ORG. Therefore, ORG may be used when counting LOCATION entities.
[00535] Standard NER libraries can be used to count the unique entities in a text. For both
precision and completeness, the combination of BSD NER and Cataloguing can be used to create

a lookup table of terms and their associated entity types (a combination of methods disclosed
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earlier). This combination covers all known entity types on the internet. This can be helpful for
specialized knowledge domains such as the medical field that may want to count entity types such
as drugs; or even count entity types on a more granular basis (such as antihistamines and other
specific types of drugs).

[00536] Any embodiment that extracts entity counts and uses the entity counts as a prefilter
during information retrieval falls within the spirit and scope of this disclosure. Any embodiment
that extracts entity counts and uses the entity counts as a prefilter for vector searching also falls
within the spirit and scope of this disclosure.

[00537] Retrieval Entity Count Process

[00538] A Storage Entity Count Process can be used to identify entity counts for storage.
Likewise, a Retrieval Entity Count Process can be used during retrieval to determine the entity
counts to be included in the query filter.

[00539] An example Retrieval Entity Count Process can return { PEOPLE: 1} for all queries
that begin with “Who”; return {LOCATION: 1} for all queries that begin with “Where”; return
{DATE: 1} for all questions that begin with “When”; return {LANGUAGES: 1} for all questions
that begin with “What language”; and so on. Although implementing such a process is simple, it
has a significant improvement over the art in pinpointing relevant passages.

[00540] Herein, “Who”, “What”, “Where”, “What language”, “How many”, and the like
shall be referred to as Interrogative Targets. Any embodiment that creates an entity count filter
based on at least one Interrogative Target falls within the spirit and scope of this disclosure.
[00541] An Interrogative Target is a linguistic part of the query that signifies the category
of response being sought. For example, “Who” signifies that the category PERSON is being
sought. “Where” signifies the category of LOCATION is being sought. “What color” signifies the
category of “type of color” is being sought (i.e., hyponym of color is the category being sought).
These categories are the target of the question; hence they are the Interrogative Target.

[00542] Some embodiments may include entity counts computed based on the Interrogative
Target combined with the number of entities within the question itself.

[00543] Consider the following query: “When did Tom Cruise marry Katie Holmes?” The
Interrogative Target “When” provides: {DATE: 1}. Also, there are two people mentioned in the
query, providing: {PEOPLE: 2}. Hence the combination of Interrogative Target plus the number
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of entities in the query provides: {DATE: 1, PEOPLE: 2}.

[00544] Filtering on such combinations of entity counts along with the keywords can allow
ISAR systems and methods to pinpoint the precise chunk(s).

[00545] Instructions are another entity type. A Storage Entity Count Process can return the
number of instructions in the input text: e.g., {INSTRUCTIONS: 3}. In English, instructions are
easily identified through parts-of-speech (POS) tagging libraries. Hence, a Storage Entity Count
Process can include returning the number of instructions by using such libraries. At the time of
retrieval, filters that require at least one instruction can be identified by Interrogative Targets such
as: “How do I, “How to”, “How can I”, etc. Hence, a Retrieval Entity Count Process can use
Interrogative Targets to identify when to return {INSTRUCTION: 1} as a filter requirement.
[00546] By filtering out all chunks that do not contain at least one instruction, the vast
majority of chunks will be excluded in many knowledge bases (such as the example Wikipedia
knowledge base), allowing for the precisely relevant chunk to rise to the top (when combined with
keywords and other filter criteria).

[00547] Herein, the following entity count notation means that a filter requires a stored
count that is equal to or greater than the stated number. In other words, {PERSON: 1} signifies
that the filter requires the stored PERSON to be equal to or greater than 1. All other chunks will
be excluded.

[00548] Any process that identifies entity counts based on the query and filters on such
entity counts during information retrieval falls within the spirit and scope of this disclosure. Any
process that identifies entity counts based on the query and prefilters on such entity counts during

vector searching also falls within the spirit and scope of this disclosure.

[00549] Storage Entity Count Subprocesses

[00550] A Storage Entity Count Process may contain one or more subprocesses.

[00551] One such subprocess can be a Named-Entity Entity Count Subprocess.

[00552] Consider questions that begin with “Where.” Such questions could be asking for a

named entity (such as a named city, state, province, or country that is identified by a proper noun
or noun phrase). A Named-Entity Entity Count Subprocess can identify all named entities
associated with locations, as has already been described above.

[00553] Another subprocess can be Noun-Type Entity Count Subprocess.
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[00554] Notice that “arena,” “school,” “stadium,” “airport,” etc., are all locations. However,
these nouns are not named entities (rather, they are common nouns). Some embodiments may
implement a Noun-Type Entity Count Subprocess that includes counting such words. This is easily
done by creating a database with all the nouns in the chosen language, and providing a column that
states what entity type the noun expresses. For example, airport could be labeled as “location,”
“engineer” could be labeled as “person,” and so on.

[00555] An LLM can be used to automate the labeling. An electronic word list can be loaded
into a database, and an LLLM can be programmatically prompted to state whether the word refers
to a person, location, etc. The result can be programmatically stored in the database.

[00556] Thus, a Named-Entity Entity Count Subprocess can use NER to count named
entities, and a Noun-Type Entity Count Subprocess can use the database lookup for non-named
entity nouns.

[00557] Another subprocess can be Cursor-Type Entity Count Subprocess.

[00558] This subprocess involves “cursors” — words that modify the function of at least one
other word in the text. Consider the following statement: “The pen was on the table.” Now consider
the query: “Where was the pen?” The word “table” is inherently neither a named entity nor is it
inherently a word that typically refers to a location. But the “cursor” term “on the” signifies that a
location is being referenced. In other words, the cursor phrase “on the” alters the function of the
word “table.” Almost any noun can refer to a location with cursors such as: “on,” “near,” “next
to,” “at,” etc. (Cursor phrases are often prepositional phrases.)

[00559] Thus, a Cursor-Type Entity Count Subprocess can include a database table that
contains a column for each cursor phrase and at least one column for at least one corresponding
function. An LLLM can be used to automate creating such a table.

[00560] It bears noting that both the Entity-Type Entity Count Subprocess and Noun-Type
Count Subprocess are deterministic, whereas the Cursor-Type Entity Count Subprocess is not.
However, the latter does have the property of including all correct references (along with potential
false positives). Such false positives will have negligible (if any) impact on precision.

[00561] Consider the instance where the word “on” is annotated as a functional cursor for
“LOCATION.” However, one sentence being analyzed is: “He was on par with everyone else.”

The payload will indeed include LOCATION: 1 (a false positive). However, this simply means
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that the associated vector may occasionally be compared more often than is ideal.
[00562] Nevertheless, using all three subprocesses for entity counting ensures that relevant
passages will never be excluded from consideration. Moreover, they will ensure that only relevant
passages will be considered, with an occasional extra vector or two being included as well.
[00563] However, even the latter situation is unlikely as the keyword and other search
requirements will typically exclude them anyway.
[00564] In short, there are three subprocesses that can be used either alone and/or in
combination with one another for Storage Entity Count Processes.
[00565] Date Range Filtering
[00566] In addition to or in lieu of storing DATE counts, some embodiments may store date
ranges. There are many ways to represent ranges in a payload such as an array of all dates from
beginning to end. Other Storage Date Range Process embodiments may simply implement an
EARLIEST_DATE and LATEST_DATE payload field.
[00567] Consider the following example: “Tom Cruise was married to Katie Holmes from
2006 to 2012.” The following fields could be included in the payload (along with other fields):

{

“EARLIEST DATE”: “20067,
“LATEST DATE”: “2012”

}
[00568] Most vector databases support the mathematical comparison of numerical fields.
Consider the following query: “Who was Tom Cruise married to in 2007?” Notice that 2007 is not
in the text of the example above. However, a Retrieval Date Range Process can transform a query
into the filter requirement for date ranges. An example Retrieval Date Range Process could
transform the above query into: [“EARLIEST DATE > 2007, “LATEST DATE <2007”]. The
query filter can then include both of these requirements (on top of any other requirements such as
entity counts and/or keywords as identified by their respective retrieval processes).
[00569] Notice that the following text will pass through this filter: “Tom Cruise was married
to Katie Holmes from 2006 to 2012.” This is indeed the correct answer to: “Who was Tom Cruise
married to in 2007?” Thus, this simple representation is very powerful.

[00570] Now consider the following query: “Who was Tom Cruise married to from 2008 to
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20147 There is no such person. Therefore, no passage can be relevant.

[00571] The Retrieval Date Range Process can return the following filter criteria:
[“EARLIEST DATE >2008”, “LATEST DATE <2014”]. The text above will not pass the filter
criteria, and therefore, will not be sent to the LLM, avoiding any possible LLM confusion or
hallucination.

[00572] The Retrieval Date Range requirements will mean that zero vectors will even be
considered (combined with the {PEOPLE: 2} entity count). In stark contrast, regular RAG
would still send the top 400 chunks, even though zero chunks are relevant.

[00573] That is one example of the utility of ISAR. Where traditional RAG will send 400
irrelevant chunks, ISAR literally sends none — letting the chat system know that there is no relevant
information in the knowledge base.

[00574] The ability to know with certainty that no information exists is an essential
component of accurate Al reasoning. Hence, ISAR extends the utility of information storage and
retrieval to additional applications of artificial intelligence.

[00575] There are various ways to store date ranges. There are various ways to derive
required date ranges at the time of retrieval. These will be readily apparent to those skilled in the
art based on this disclosure.

[00576] Hyponym Filtering

[00577] Entity Count Filtering involves recording entity counts during storage, and filtering
on the recorded entity counts during retrieval.

[00578] Date Range Filtering involves recording date ranges during storage, and filtering
on the recorded date ranges during retrieval. It also includes automated generation of date ranges
from the chunk (as opposed to having the date ranges be provided as metadata independent of the
text itself).

[00579] Hyponym Filtering disclosed herein involves recording hypernyms during storage,
and filtering on the recorded hypernyms during retrieval.

[00580] The technical field of Natural Language Processing (NLP) includes expressing term
relationships as hypernym/hyponym pairs. In short, a hyponym is a fype of a hypernym. For
example: white is a type of color. Hence, white is a hyponym of the hypernym color.

[00581] Hyponym/hypernym pairs can be electronically extracted from text using various
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linguistic patterns, including the well-known Hearst Patterns. Hyponym/hypernym pairs can be
extracted from the text itself. Alternatively, a large corpus such as Common Crawl can be text
mined using Hearst Patterns and other linguistic structures to obtain virtually all known
hypernym/hyponym pairs for any given language. These pairs can be stored in a database. A
Storage Hyponym Process can retrieve the hypernym for each noun in the provided text.
[00582] Consider the following text: “The sun is white when seen from outer space.” During
ingestion, the Storage Hyponym Process can retrieve the hypernym “color” when processing the
noun “white.” A HYPONYM metadata field can contain the Aypernyms of the nouns in the text.
[00583] The reason for storing hypernyms in a hyponym field will become clear when
discussing the Retrieval Hyponym Process. Of course, this field and any other can be named in
any manner whatsoever so long as the appropriate values are stored in the field and the values are
used as filters in the manner disclosed herein. For example, LOCATIONS could be LOCATION,
LOC, location, loc, or even taco. So long as a field is storing an entity count representing the
number of locations, and the field is being used to filter on locations based on the query, such falls
within the spirit and scope of this disclosure.
[00584] Consider once again the following text: “The sun is white when seen from outer
space.” The Storage Hyponym Process resulted in the HYPONYM field including the word
“color” among other words (due to the word “white” in the text).
[00585] Now consider the following query: “What color is the sun when viewed from
outside the atmosphere?” Notice the Interrogative Target “What color.” The linguistic structure
“What {Noun}” means “Which hyponym of noun.” In other words, “What color” means “Which
hyponym of color.” More specifically, “What color is the sun when viewed from outside the
atmosphere?” means “Which hyponym of color is the sun when viewed from outside the
atmosphere?”
[00586] Thus, a Retrieval Hyponym Process can use the linguistic structure of the query to
identify any hyponyms that will be required by the query filter (e.g., {HYPONYM: “color”}).
[00587] Notice that the query and text only share one keyword in common

e Text: The sun is white when seen from outer space.

e Query: What color is the sun when viewed from outside the atmosphere.

[00588] Ideally, the concept of pinpointing relevant information would involve a query filter
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that includes a minimum of two criteria. Yet, there is only one keyword to match on in examples
like this one.

[00589] This is where the HYPONYM field provides the second requirement. The Retrieval
Hyponym Process provides that only passages that contain at least one color will pass through the
filter. The keyword “sun” will ensure that only passages that contain the word “sun” will pass
though the filter. The combination of the two will only allow passages that use the word “sun”
AND contain at least one color to pass through the filter — thereby pinpointing the relevant
chunk(s).

[00590] Notice that “color” represents the type of word to search for, not the word itself. In
other words, “What color” does not signify that the search should look for chunks that contain the
word “color” itself. Hence, some Retrieval Keyword Processes may use the linguistic structure of
Interrogative Targets to exclude such words from being included in the returned keyword list.
[00591] Keyword Filtering

[00592] Keyword Filtering involves recording chunk keywords during storage, and filtering
on the recorded keywords during retrieval. An ISAR system or method can use standard methods
for identifying and recording keywords during storage. However, ISAR introduces novel methods
of filtering on the recorded keywords during retrieval.

[00593] A Storage Keyword Process can include considering any non-common word in the
chunk as being a keyword. In NLP, stopwords is the term used to connote a lists of common words.
One way of rapidly identifying keywords is to compare each word in a chunk to a list of stopwords.
If the word is not in the list, then it can be returned in the keywords array.

[00594] A Storage Keyword Process may also use a parts-of-speech (POS) tagging library
to identify multi-word terms such as the names of people, companies, countries, etc.

[00595] Alternatively, named entities and other multi-word terms can be stored both as
individual words, and their full terms can be included as well. For example, Tom Cruise can be
included in the keyword list as: [ Tom’, ‘Cruise’, “Tom Cruise”].

[00596] Some embodiments of the Storage Keyword Process may store the lemma singular
form verbs in lieu of or in addition to the original verb. In fact, multiple lemma and other root
identification methods can be applied and used either alone and/or in combination with each other.

[00597] Some embodiments may include the singular form of nouns even where the plural
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form is used in the text. The singular form may be used in lieu of or in addition to the plural.
[00598] The creation of a keywords metadata entry has been performed for decades, and
therefore, there are many well-known methods for creating such fields.
[00599] However, ISAR includes novel methods of using the keyword field during retrieval.
This includes novel methods such as Ngram Searching and Retrieval Keyword Expansion Process
(which are described below). These novel methods of keyword filtering can be used alone and/or
in combination with other novel methods and/or in combination with the standard keywords field
and traditional vector search.
[00600] A preferred embodiment may include all the novel methods disclosed herein to
augment both keyword and vector search to pinpoint the precise chunk that contains relevant
information to the given query.
[00601] Keyword Filtering Notation
[00602] For the remainder of this disclosure, the keywords field requirements during
retrieval shall be expressed using an array (a structure known to programmers). For example:

Keywords = [

[“sun™],

[“see™],

[“outer space”]

|
[00603] This notation means the query filter must be constructed such that the keywords
field contains “sun” AND “see” AND “outer space.” Once again, the capital word AND signifies
a Boolean “and” condition.
[00604] Now consider the following:

Keywords = [

2

“sun”, “star”],

2%
2

“see”, “view’],

[“outer space”, “galaxy”’]
|

[00605] In programming, this notation is called a two-dimensional array. Such a two-

dimensional array can easily be programmatically converted in the appropriate structure for the
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query filter that is required for the vector database used in any given embodiment.
[00606] The above two-dimensional array signifies that the keywords field must contain
(“sun” OR “star”) AND (“see” OR “view”) AND (“outer space” OR “galaxy”). The capital AND

and the capital OR signify their respective Boolean operations.

[00607] Rather than listing every word, the name of a process that outputs a list of terms
can be used:
Keywords = [

[Synonyms Process (“sun”)],

[Synonyms Process (“see”)],

[Synonyms Process (“outer space”)]

|
[00608] Again, a programmer will know how to accomplish the above in any modern
programming language, including Javascript, Python, C, C++, C#, etc.
[00609] The notation signifies that the array of strings returned by the process will be values
of the internal array in the two-dimensional array. In other words, the first inner array would be
populated with all the terms returned from the Synonyms Process where “sun” is the input into
that process.
[00610] Hence, the query filter will be constructed using the list of returned words (not the
names of the processes themselves). In doing so, the above can be readily applied to
programmatically creating query filters for the structure required by the vector database chosen
for any given embodiment.
[00611] Thus, the above is shorthand for a query filter that requires the keywords field to
contain (one of the returned synonyms for “sun”) AND (one of the returned synonyms of “see”
AND (one of the returned synonyms for “outer space”).
[00612] Hence, each row represents one AND condition. In the above example, there are
three rows, and therefore, three AND conditions.
[00613] Relevant Facts Extraction Process (RFEP)
[00614] As annotated above, ISAR systems and methods can attempt to find hits by sending
different query filters. For example, a query filter may include the exact matches for keywords. If

relevant facts are not found, then a query filter may include a list of synonyms for keywords.
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[00615] In such embodiments, an ISAR system needs to know when to stop. In other words,
it needs to know when relevant facts have been found so that it can send them to the requesting
process and exit. Thus, ISAR embodiments can implement a Relevant Facts Extraction process to
know when relevant facts exist in the top-k hits (e.g., the top-10 hits).

[00616] A Relevant Facts Extraction Process can receive two inputs: texts and a query. The
Relevant Facts Extraction Process returns the facts in the text that are relevant to the query. It can
return a null value, an empty string, or an empty array if none of the texts contain any relevant
facts.

[00617] Where the texts are composed of FFs, implementing a Relevant Facts Extraction
Process is both simple and 100% accurate. An LLM or a BSD neural network can be used to extract
the FFs verbatim that are relevant. Since the LLM is performing an extractive task, then the issue
of noun-phrase collisions is avoided. Thus, the issue of hallucinations is avoided as well.

[00618] If the embodiment requires 100% accuracy, then FFs can be used as the input and
an extractive prompt can be used. For example: “Which statements in the provided Texts are
relevant to answering the provided Query?” If the texts are not FFs, the text can be converted into
FFs using a BSD FF Pipeline, and then, an extractive prompt can be used.

[00619] For example, where FFs are used, an LLM can be prompted as follows:

e System Prompt: Extract all facts from the provided Context that are directly relevant to the
provided Prompt. Solely return the facts provided in the Context. Solely return facts that
are complete sentences. Do not make any inferences. Do not add any facts. The return
format must be stringified JSON in the following format: [array of relevant facts goes here].
Add proper escaping for quotes. If there are no relevant facts then return an empty array.

o  User Prompt Template: Prompt:\n${prompt }\n\nContext:\n${ text }

[00620] However, if the texts are not converted to FF format, then the LLLM will need to
generate facts by rewriting some of the unformatted information. Such a generative task is subject
to noun-phrase collisions, and therefore, cannot be trusted to be 100% accurate. For example,
asking an LLM to extract facts from an excerpt of a news article will often require the LLM to
rewrite some of the text (which makes it a generative task, not a purely extractive one).

[00621] If a generative fact extraction prompt is used with raw text, then an FF MCI can be

used to convert the output to a series of FFs to ensure 100% accuracy.
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[00622] Categorical Validation Subprocesses

[00623] Three optional Categorical Validation Subprocesses can also be used to remove any
facts that do not pass certain validation criteria. These subprocesses can be used within the
Relevant Facts Extraction Process and/or they can be used after the Relevant Facts Extraction
Process returns the list of facts that it considers to be relevant.

[00624] These validation subprocesses can include validating 1) any preposition that
narrows that topic being queried; 2) the past, present, and/or future; and 3) real life versus fantasy.
Such validation can be done using the following three Categorical Validation Subprocesses:
Prepositional Categorical Validation Subprocess, Time Categorical Validation Subprocess, and
IRL Categorical Validation Subprocess (i.e., “in real life” (IRL)).

[00625] Time Categorical Validation Subprocess

[00626] Information retrieval systems typically seek to return chunks based on keyword
matching and semantic similarity — regardless of whether the chunks are even referring to the same
time period as the query. This can be rectified by using a Time Categorical Validation Subprocess.
[00627] A Time Categorical Validation Subprocess can determine if the query applies to
the past, present, or future as well as if the query applies to a specific time. It can then loop through
each relevant fact and identify whether the fact applies to the past, present, or future. If the fact
refers to a different time than the query, the fact can be removed from the relevant facts list.
[00628] Consider the following query: “Who did Tom Cruise marry.” This query can be
sent to a Time Category Identification Process (TCIP). The TCIP can return “past” to signify that
the input text is referring to a past event.

[00629] Consider the following query: “Who did Tom Cruise marry in 2006.” This query
can be sent to a TCIP. The TCIP can return “past (2006)” to signify both the time orientation and
the precise time period.

[00630] A Time Categorical Validation Subprocess can obtain the time category of the
query using TCIP. The subprocess can loop through all the facts currently considered relevant and
send each to TCIP as well. If the TCIP output of any given fact mismatches the TCIP output of the
query, then that fact can be discarded.

[00631] A TCIP can use the structure of the input text to determine the time orientation. For

example, “When did...” refers to the past; “Will...” refers to the future; “Can I...” refers to the
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present; and so on. The grammar of most languages, including English, allows this step to be easily
implemented. The TCIP can return whether a query is referring to the past, present, or future along
with whether it is referring to specific time period.

[00632] Naturally, an LLLM can be used to determine the time orientation of text as well.
[00633] A Time Categorical Validation Subprocess can use a TCIP on both the query and
at least one fact in the relevant facts list to see if they both produce the same output. If they do not,
then the fact can be removed from the relevant facts list.

[00634] IRL Categorical Validation Subprocess

[00635] Information retrieval systems typically return chunks based on keyword matching
and semantic similarity without distinguishing whether the query is referring to a fictional entity
or something that occurs in real life (IRL). Thus, a fact discussing a fictional entity can be sent
even though the query was inquiring about real life; and vice versa. An IRL Categorical Validation
Subprocess can remedy this issue.

[00636] An IRL Identification Process can accept text as input and then return whether the
text is referring to fiction or real life.

[00637] Consider the following query in the TruthfulQA dataset: “Are rats good at
cooking?” Certain LLMs get this answer wrong because they return information about Remy, a
fictional rat that was depicted as being an excellent chef. However, the actual meaning of the query
is: “In real life, are rats good at cooking.”

[00638] Thus, it can be useful to include an IRL Identification Process that can accept the
query and return whether the query is referring to real-life or fiction. A neural network can be
trained to implement this process (e.g., fine tuning an LLM). Alternatively, the linguistic structure
of the query can be checked for fictional references (e.g., cartoon, movie, play, etc.). If no fictional
reference is made, then the function can return “real life” as the default response. Otherwise, it can

return “fiction.”

[00639] In short, the criteria of “real life” can be assumed unless the query specifies
otherwise.
[00640] Alternatively, the process can prompt an LLM to provide the information. Example

prompt templates include:

e “Does the provided Text refer to any fictional or mythical topics. The response must be

83



solely ‘yes’ or ‘no’” without any commentary.”
e “Does the provided Text refer to the real-world. The response must be solely ‘yes’ or ‘no’
without any commentary.”
o “Does the provided Text refer to any legends. The response must be solely ‘yes’ or ‘no’

without any commentary.”
[00641] The process can include one or more of such prompts for robustness.
[00642] An IRL Categorical Validation Subprocess can use an IRL Identification Process
to identify the reality orientation of the query. The subprocess can use the IRL Identification
Process to determine the reality orientation of at least one fact in the relevant facts list. If there is
a mismatch in reality orientations, then the fact can be discarded from the list.
[00643] Prepositional Categorical Validation Subprocess
[00644] The concept of “relevance” can be subjective. By ensuring that facts match both
time orientation and reality orientation, a more deterministic validation of relevance is applied.
[00645] The same goes for queries such as: “What are the best books of 20247” The
Relevant Facts Extraction Process may extract facts about books without fully considering the
specific criteria imposed by the prepositional phrase.
[00646] Prepositional phrases often limit the scope of a query or statement. Consider the
following: “What are the best books of 2024 written by Stephen King?” Here there are two
prepositional phrases: “of 2024” and “by Stephen King.” Both limit the scope of the query by
themselves, and the correct answer requires that both limitations are met at the same time.
[00647] A Query Prepositional Identification Process can return the noun phrases of each
prepositional phrase (e.g., 2024 and Stephen King). A Prepositional Categorical Validation
Subprocess can loop through the facts currently considered to be relevant and remove any that do
not include all the noun phrases contained in the Query Prepositional Identification Process. For
example, any facts that do not mention both 2024 and Stephen King can be discarded.
[00648] Alternatively, a Prepositional Categorical Validation Subprocess can construct an
LLM prompt to confirm the fulfillment of the prepositional requirements. For example: Does the
Jfollowing statement contain a type of book that is described as being one of the best books of 2024
written by Stephen King. Simply answer ‘yes’ or ‘no’ with no commentary.

[00649] Programmatically creating prompts from prompt templates and examples is a
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commonly performed task in the art.

[00650] Each fact currently considered to be relevant can be supplied as a statement and the
LLM can use a prompt similar to the one above to confirm that the statement matches the
requirements of being a best book of 2024 and the criteria of being written by Stephen King.
[00651] Moreover, a neural network can be trained to transform a query into such a prompt.
In fact, because the query transformations are deterministically derived from prepositions, a BSD
neural network can be trained to generate the prompt. Each fact can then be submitted to the LLM
along with the BSD generated prompt to ensure that the statement meets all the criteria specified
in the query.

[00652] Any embodiment that excludes at least one fact or chunk based on the narrowing
scope of a prepositional phrase in a query falls within the spirit and scope of this disclosure.
[00653] The Utility of Expansion and Contraction Both

[00654] The majority of this disclosure has focused on contraction (e.g., limiting what
passes through the prefilter) up to this point. However, human language sometimes requires narrow
searching, sometimes requires broad searching, and sometimes requires both at the same time. The
latter may not only sound unintuitive but may also sound undoable. Yet, ISAR systems and
methods can be implemented that contain contraction, expansion, as well as a coordinated
combination of both at the same time. In this way, the fluidity of the search continually adapts
until it matches the fluidity of the language used to convey information that is relevant to the user’s
query. In other words, some others use technical terms, some use words such as “thingamabob”,
some write precisely, some are more verbose. These are examples of fluidity.

[00655] Because the fluidity of the relevant language is unknown at the time of query, the
retrieval process must be able to continually adjust its own fluidity structure until a match is found
between the retriever’s fluidity structure and the fluidity used by the author of the relevant material.
[00656] This is perhaps one of the biggest flaws of traditional keyword and vector search.
They are both too rigid. Keyword search is certainly more rigid than vector embeddings. But the
idea that the fluidity of language can be encapsulated into a cosine similarity score based on a
series of a thousand numbers is misguided at best.

[00657] Thus, ISAR combines simultaneous contraction and expansion. Examples of

contraction include Entity Count Filtering, Hyponym Filtering, Date Range Filtering, Keyword
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Filtering, Relevant Facts Extraction, Time Categorical Validation, IRL Categorical Validation, and
Prepositional Categorical Validation.

[00658] These contractive methods are simultaneously implemented along with expansive
methods disclosed below. Some expansive methods include Absolute Synonyms, Synset
Synonyms, Wide Synonyms, Holonyms, Related Words, and Indexical Time Adjustments.
[00659] Selective Synonyms

[00660] ISAR does not rely on a single conception of synonyms. Instead, embodiments can
implement the novel concept of Selective Synonyms.

[00661] One aspect of Selective Synonyms refers to limiting the degree of synonyms
permitted based on the type of the input text.

[00662] For example, if the input type is a quote, then no transformation of the input is
permitted, meaning no synonyms at all.

[00663] If the input type is a named entity, then the only degree of transformation is
Absolute Synonyms. (The NLP term Absolute Synonyms refers to expressions that can be
substituted with one another without any information loss.)

[00664] Other nouns, and other parts of speech, can be permitted to be transformed into the
widest possible list of synonyms, herein referred to as Wide Synonyms.

[00665] Wide Synonyms

[00666] Most synonym resources provide wide synonyms (i.e., all synonyms known for the
word). There are many electronic implementations of Moby thesaurus which can be used to
programmatically identify the wide synonyms for any given term in English.

[00667] Synset Synonyms

[00668] Synset synonyms refers to synonyms that are based on the same semantic meaning
as the way the term is used in the text. The difference between Wide Synonyms and Synset
Synonyms is perhaps best explained by way of example.

[00669] Consider the following query: “What color is the sun when viewed from space?”
Let’s further focus on the word “space.” The following are the wide synonyms for space
electronically retrieved from a library implementation of Moby Thesaurus:

[00670] 3-d, cat, accommodation, aerospace, acrosphere, aesthetic distance, air hole, air

pocket, airspace, alien, align, allocate, allot, amount, ample scope, amplitude, aperture, apportion,
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area, arrange, array, astronomical unit, bar, bar line, belt, berth, bit, blank, blank check, brace,
breadth, break, broaching, bump, burden, caesura, caliber, capacity, carte blanche, cavity, ceiling,
celestial space, chaos, chasm, check, chronology, clearance, clearing, cleft, collocate, compass,
compose, confine, content, continental shelf, continuity, cordage, corridor, cosmic space, country,
crack, crosswind, cubic, cut, day, deal, deal out, deep space, degree, department, depths of space,
dimensional, disclosure, discontinuity, dispart, dispose, distance, distance between, distribute,
district, divergence, division, double space, duration, duree, elbowroom, em, em quad, em space,
empty space, en, en quad, en space, environ, ether space, expanse, expansion, extent, exterrestrial,
extramundane, extrasolar, extraterrene, extraterrestrial, farness, fateful moment, favorable wind,
fenestra, field, fistula, five-em space, fix, flat, fog, fontanel, foraman, four-em space, fourth-
dimensional, free course, free hand, free play, free scope, freeboard, front, full scope, full swing,
gap, gape, gat, grade, ground, gulf, hair space, half space, head wind, heartland, height, hiatus,
high-pressure area, hinterland, hole, hollow, hour, infinity, inlet, instant, interim, intermediate
space, intermission, interruption, interspace, interstellar space, interstice, interval, ionosphere,
jetstream, jump, juncture, justification space, justifying space, kairo, keep apart, lacuna, land,
lapse, lastingness, latitude, lay out, laying open, leak, leap, ledger line, leeway, length, level, light-
year, light-year, limit, line, line up, long rope, low-pressure area, make a space, maneuvering
space, margin, mark, marshal, measure, measure out, metagalactic space, mileage, milieu, minute,
moment, moment of truth, neighborhood, no holds barred, notch, nuance, ocean of emptiness,
offshore rights, open space, opening, opening up, order, organize, orifice, otherworldly, outer
space, outlet, overcast, parcel out, parsec, parsec, part, parts, pas, passageway, patent space, pause,
peg, period, perspective, piece, pitch, place, plane, plateau, play, pocket, point, pore, poundage,
precinct, pregnant moment, premises, pressureless space, proportion, proportional, psychological
moment, psychological time, purlieus, quad, quadrat, quantity, quarter, rally, range, rank, ratio,
reach, regiment, region, remoteness, remove, room, rope, roughness, round, rung, salient, scale,
scope, sea room, season, seat, section, separate, separation, set apart, set at interval, set out, shade,
shadow, single space, slot, slug, soil, soup, space between, space out, space-time, spaceband,
spaciousness, span, spatial, spatiotemporal, spell, spherical, split, spread, staff, stage, stair,
standard, stave, step, stereoscopic, stint, stoma, stowage, stratosphere, stretch, stride,

substratosphere, superficial, surface, swing, tail wind, tense, term, terrain, territory, the future, the
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past, the present, the void, the void above, thick space, thin space, three-dimensional, three-mile
limit, throwing open, tide, time, time interval, time lag, timebinding, tolerance, tonnage,
transcendental, transmundane, tread, tropopause, troposphere, trough, turbulence, twelve-mile
limit, two-dimensional, uncorking, unstopping, vicinage, vicinity, visibility, visibility zero,
volume, volumetric, wait, way, way, whet, while, wide berth, yawn, zone, abstraction, amorphous
shape, location, character, grapheme, graphic symbol, blank space, surface area, type, put, set,
pose, position, lay

[00671] As discussed above, keyword filters can be constructed by expanding keywords
using synonyms. In other words, instead of requiring the word “space” to be in the keywords list,
the filter query can include all the synonyms of “space” to see if the keywords field contains any
of them.

[00672] Herein, any reference to a synonym of a term refers to a list containing both
the corresponding synonyms for the term along with the term itself. Hence, wide synonyms
of “space” would include the list immediately above plus the term “space” itself. The same goes
for all the synonym processes disclosed herein.

[00673] However, jumping from requiring “space” to requiring the wide synonyms of
“space” is a radical step. Therefore, ISAR systems and methods can first check if the exact
keywords are found. If they are not, then Absolute Synonyms can be checked. If no Absolute
Synonyms are found, then Synset Synonyms can be checked. Synset Synonyms are based on the
way that the word is used within the query.

[00674] For example, the word “space” has many meanings. Moby Thesaurus contains a
large list of synonyms encompassing all the meanings of the word space. However, the word space
has only one meaning in the query itself. Therefore, it is helpful to extract the synonyms from the
wide synonyms list that correspond to the meaning of the term as it is used in the text. This is the
meaning of Synset Synonyms.

[00675] Once again, consider the following query: “What color is the sun when viewed from
space?” The Synset Synonyms for the word “space” based on the way it is used in the query is as
follows:

2 29 LC

[00676] [“aerospace”, “airspace”, “celestial space”, “cosmic space”, “deep space”, “depths

2% 29 LC

of space”, “empty space”,

2 2 2

ether space”, “intermediate space”, “interstellar space”, “interspace”,
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2% 2% 2

“metagalactic space”, “open space”, “outer space”,

29 LC 2

pressureless space”, “space”, “space-time”]
[00677] Notice how much more precise Synset Synonyms are compared to Wide
Synonyms. If a passage does indeed contain one of the Synset Synonyms then it stands a high
probability of being relevant.

[00678] Synset Synonyms can be extracted from Wide Synonyms using an LLM. The
following query template is one such example: “Which of the provided Synonyms of {term} apply
the word {term} in the following context: {query }\n\nSynonyms:\n\n{full list of wide synonyms}”
[00679] Synset Synonyms are much more precise than Wide Synonyms (which are typically
used in the art). It is this precision that reduces the number of chunks that will pass through the
prefilter, thereby limiting the number of vector embeddings that need to be searched.

[00680] Another way to find Synset Synonyms is to query an LLM directly without
providing a list of wide synonyms from which to extract. For example, Synset Synonyms of a verb
can be extracted as follows: “What other verbs can be associated with the verb { Verb Phrase Root}
in the context of {Verb Phrase}. Return an array with no commentary.” Or more generically:
“What other words are synonyms for the word {word} in the context of {sentence or phrase}.
Return an array with no commentary.”

[00681] The above list of synset synonyms was obtained using an LLM, demonstrating the
effectiveness of the previously disclosed methods.

[00682] Absolute Synonyms

[00683] An Absolute Synonym Process can accept a term and return a list of the absolute
synonyms of that term.

[00684] Herein, Absolute Synonyms means the same thing as the term is used in Natural
Language Processing. An Absolute Synonym means the precise equivalent.

[00685] At first blush, named entities may not appear to have synonyms. However, they
can, and often do, have Absolute Synonyms. Consider the following query: “Was Ronald Reagan
a Democrat.” The query contains two Named Entities: Ronald Reagan and Democrat. Both named
entities can be expanded into Absolute Synonyms.

[00686] For example, Ronald Reagan can be expanded into the following list: “Ronald
Wilson Reagan,” “The Gipper,” “The Great Communicator,” “40th President of the United

States.” Likewise, Democrat can be expanded into the following list: “Dem,” “Democratic Party
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member,” “Democrat Party member,” “DP member.”
[00687] Creating a process to find Absolute Synonyms is now trivial for those skilled in the
art due to the advent of Large Language Models (LLMs). Processes can programmatically prompt
LLMs to provide the information.
e Example Prompt Template: What words, phrases, and abbreviations are absolute synonyms
to the provided Word. Solely return an array without any commentary. Word: {word}
e Example 1: What words, phrases, and abbreviations are absolute synonyms to the provided
Word. Solely return an array without any commentary. Word: Ronald Reagan
e Example 2: What words, phrases, and abbreviations are absolute synonyms to the provided
Word. Solely return an array without any commentary. Word: Democrat
[00688] The systems and methods of this present invention utilize LLMs by extracting their
learnings and using such extraction to intelligently pinpoint relevant information from a
knowledge base.
[00689] Another LLM Prompt Template can simply be: “List absolute synonyms for:
{term}. The response must not contain any commentary.” Embodiments may use prompt
engineering as known in the art to create the optimal prompt template for the chosen LLM(s).
[00690] For example, a process using Llama 3.1 405b was used to identify the above
Absolute Synonyms for Ronald Reagan and Democrat. The following template was used: “What
words, phrases, and abbreviations refer exactly to the provided Word. Solely return an array
without any commentary. Word: { Absolute Noun Phrase}.” Those ordinarily skilled in the art
know how to programmatically create similar prompts.
[00691] Consider the commonplace example of someone submitting the following query:
“Fun things to do in the Big Apple.” The knowledge base likely has a lot of relevant information
that refers to “New York City” not “Big Apple.”
[00692] Searching solely on “Big Apple” will exclude numerous passages that use the term
“New York City.” Searching on the Absolute Synonyms for “the Big Apple” fully resolves this.
[00693] This also allows the word “fun” to be used as well. Texts may discuss “interesting,”

29 LC

“enjoyable,” “thrilling,” or “exciting” things to do in “New York City.” By searching for the
Absolute Synonyms of “fun” AND “the Big Apple,” a precise filter is created by both contracting

and expanding what passes through the filter at the same time.
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[00694] Hyponym Synonyms

[00695] Hyponyms can also be expanded through Absolute Synonyms, Synset Synonyms,
and Wide Synonyms.
[00696] Questions involving hyponyms are extremely common. Yet, these questions are

also among the most challenging. After all, they are not amenable to strict keyword searches. For
example, when a user asks “What color” they are not searching for a passage that contains the
word “color” in it. Hence, keyword search is unhelpful.
[00697] Moreover, there are so many ways to ask for hypernyms that it is cumbersome to
attempt to anticipate them all. Consider a chunk that says: “iPhones have extreme clarity when
making international calls to Europe.” Now consider the following query: “What thingamabob is
best for phoning my Aunt in Europe?”
[00698] The only keyword match between the desired chunk and query is “Europe.” If there
are a lot of chunks with that word, it is possible that vector embeddings may not be sufficient. A
multi-criterion search is always preferred.
[00699] Notice that the query is asking regarding the hyponym of “thingamabob” and the
target text is “iPhone” (the plural singularized when indexing). When processing the “iPhone”
reference, “thingamabob” will not be stored in the HYPONYM field because “thingamabob” is
not one of the top 50 hypernyms of the word iPhone. However, words such as “gadget” and
“device” are added to this field (as confirmed by real-world testing).
[00700] Nevertheless, the hypernym “thingamabob” will not be included; yet users type this
kind of stuff all the time. Therefore, embodiments may implement Hyponym Synonym Search to
systematically solve this problem.
[00701] Just as keywords can be expanded:

Keywords = [

[Synonym Process (“sun”)]

|
[00702] So too can expansions of the hyponym field be sent. For example:

Hyponyms = [

[Synonym Process (“thingamabob™)]

|
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[00703] Llama 3.1 405B lists the following synonyms for thingamabob: gadget, gizmo,
widget, device, etc. Notice that both “gadget” and “device” are found within the hyponym

field for the passage regarding the iPhone.

[00704] Thus, by expanding hyponyms in the same manner as keywords, the fluidity of the
query was able to match the fluidity of the stored text.

[00705] Related Words

[00706] Consider the following query: “Who was Tom Cruise’s spouse in 20067” Now

consider the following text: “Tom Cruise married Katie Holmes in 2006.” Synonyms will not
bridge the gap between “spouse” and “married” because spouse is a noun and married is a verb.
[00707] Although these are not synonyms, they are related words.

[00708] Thus, another term expansion process can be a Related Words Process that returns
words that are related to the input term, regardless of whether they are synonyms or not and
regardless of whether they are the same parts of speech or not.

[00709] Many programmatic implementations of WordNet exist that can be used to
implement such a process.

[00710] A novel method of generating a list of related words involves using vectors. As a
reminder, the smaller the input text, the stronger a vector becomes. There is no text smaller than a
single word in terms of vector semantics.

[00711] A Related Words Catalogue Process can split an entire corpus into words and terms.
This process can use a Vector Generation Process to generate a numerical vector for each word
and term used in the corpus. These single-term vectors can be loaded into a vector database. A
related-words catalogue has just been created.

[00712] Now consider the word spouse. Finding related words is now as simple as a
traditional vector search. The word “spouse” can be converted into a numerical vector. The vector
database can use this vector to find the stored terms that have the highest vector similarity score.
The top-n hits can be returned as the list of “related words” (where “n” is a number).

[00713] Thus, a Related Words Process can receive a term and return the list of related
words using one of the methods described above and/or a similar method.

[00714] Holonym Process

[00715] Finally, there is one more linguistic challenge to overcome. Consider the example
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passage once again: “iPhones have extreme clarity when making international calls to Europe.”
Now consider a derivative of the above query: “What thingamabob is best for phoning my Aunt
in the UK?” Notice that the query does not say “Europe.” It says “UK.” Therefore, a query filter
requiring a keyword match on “UK” will exclude the ideal passage.
[00716] Notice also that expanding the keyword “UK” using synonyms will not fix this
because “UK” and “Europe” are not synonyms.
[00717] Related words may fix this. However, there is danger in returning related words for
named entities. Just as synonyms need to be selective based on parts of speech, so too can the
Related Words Process solely return related words for words that are not named entities. An ISAR
Related Words Process can return the input text verbatim when it is a named entity.
[00718] The solution is to include a Holonym Process in the list of Term Expansion
Processes. UK is part of Europe. In other words, Europe is a holonym of UK.
[00719] Thus, another way to expand keywords is:

Keywords = [

[Holonym Process (“UK”)]

|
[00720] Once again, LLMs make implementing electronic linguistic processes trivial for
those skilled in the art. Consider a process that includes prompting Llama 3.1 405B as follows:
“Name 25 holonyms for the following word: United Kingdom.” The LLM returns: Europe,
Northern Europe, Western Europe, British Isles, etc.
[00721] Six Levels of Term Expansion Processes
[00722] The following are example term expansion processes. They can each receive a text
and an optional term type as well. The Synset Synonyms Process includes receiving the query
itself and/or the part of speech in which the term is used. Embodiments may implement them in
the following order:
[00723] 0) Verbatim Process: Returns the input term verbatim (without any change).
[00724] 1) Absolute Synonyms Process: If the term type is a quote, it returns the term
verbatim. Otherwise, it returns the absolute synonyms of the term.
[00725] 2) Synset Synonyms: If the term type is a quote, it returns the term verbatim. If the

term type is a named entity, then it returns the absolute synonyms of the term. Otherwise, it uses
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either the supplied query or supplied part of speech to find the synset synonyms. It may generate
them (as previously disclosed). Or it may use the Wide Synonyms Process to first get a list of all
the synonyms and then use the supplied information to extract the Synset Synonyms from the full
list (as has been previously disclosed).

[00726] 3) Wide Synonyms Process: If the term type is a quote, it returns the term verbatim.
If the term type is a named entity, then it returns the absolute synonyms of the term. Otherwise, it
returns the full list of synonyms for the term.

[00727] 4) Related Words Concatenation Process: Returns the concatenation of the Wide
Synonyms Process output for the term plus the Related Words Process output.

[00728] 5) Holonym Concatenation Process: Returns the concatenation of the Wide

Synonyms Process plus the Related Words Process output plus the Holonym Process output for

the term.

[00729] Ngram Searching: Coordinated Contraction and Expansion

[00730] Figures 9 through 12 illustrate an ISAR Retrieval Embodiment that coordinates
the simultaneous contraction and expansion to pinpoint the relevant fact(s).

[00731] Query processing is depicted in Figure 9.

[00732] A query is received 900. The query is sent to an Indexical Time Query Rewrite

Process 901. If the query does not contain an indexical time reference, then it remains unchanged.
If the query contains an indexical time reference, then it is rewritten as a query regarding a fixed
date in time. For example, “How old is Barack Obama?” contains an indexical time reference
(meaning that the answer to the question changes over time). Therefore, it gets rewritten as: “When
was Barack Obama born?” This is an absolute date query whose answer does not change over
time.

[00733] (Later, the Indexical Time Response Calculation 1210 (Fig. 12) will use reasoning
to compute the difference from the present time to the dates in the response. It will append
information accordingly. For example, the process can append the number of years that have
passed for any response that includes a birth date. By rewriting the indexical time reference, and
computing any results in the response, the answer is 100% accurate.)

[00734] The queryVector is generated by the Vector Generation Process 902 (Fig. 9). The

query’s required entityCounts are returned from the output of the Retrieval Entity Counts Process
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903. The query’s required hyponyms are returned from the Retrieval Hyponyms Process 904. The
query’s dateRanges are return from the Retrieval Date Ranges Process 905. The query’s keywords
are returned from the Retrieval Keywords Process 906. The keywords, entityCounts, hyponyms,
dateRanges, query, and queryVector are sent to the Ngram Loop 907.

[00735] An example Ngram Loop embodiment is depicted in Figure 10.

[00736] The Ngram Loop receives keywords, entityCounts, hyponyms, dateRanges, query,
and queryVector 1000. The maxRound value is set to the number of keywords 1001. The curRound
value starts at 1 (1001). If the curRound is not less than or equal to the maxRound 1003, then the
process returns an empty array 1002. This will occur if all the rounds occur without any relevant
facts being found.

[00737] If the curRound is less than or equal to the maxRound 1003, then the ngramSize is
set to: (maxRounds + 1) — curRound 1004. Consider where there are five keywords (A, B, C, D,
E). The maxRound is therefore equal to five as well 1001. On the first round, the ngramSize is also
equal to five: (maxRounds + 1) —curRound = (5 + 1) — 1 =5 [1004]. This means that the getNgrams
process 1005 is going to return the full set of keywords (nGrams = [[A, B, C, D, E]]). However,
on the second round, the ngramSize drops down to 4: : (maxRounds + 1) —curRound = (5 + 1) —
2=41[1004]. This means that the getNgrams process 1005 is going to return a list of every possible
unique combination that contains 4 keywords 1005 (nGrams = [[A, B, C, D], [B, C, D, E], [A, B,
C, EJ, etc.]). Likewise, on round 3, the ngramSize will be 3 [1004]. In which case the getNgrams
process 1005 is going to return a list of every possible unique combination that contains 3
keywords 1005 (nGrams = [[A, B, C], [B, C, D], [C, D E], etc.]. In other words, the getNgrams
process returns every possible unique keyword combination that contains ngramSize number of
keywords 1005.

[00738] numNgrams gets set to the number of keyword combinations returned by the
getNgrams process 1006. For example, if numNgrams is 5, that means that there are five arrays of
keywords within the larger nGrams array (i.e., nGrams is a two dimensional array as annotated in
the paragraph above). Hence, nGrams[0] is a set of keywords, nGrams[1] is a set of keywords, all
the way up to nGrams[numNgrams — 1], which is the final set of keywords.

[00739] Thus, curNGramlIndex starts at 0 1006 and continues to increment 1007, 1010 until

either Relevant Facts are found 1011, 1012 or until the curNGramIndex is no longer less than the
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numNGrams 1007, in which case the curRound is incremented 1008. If curRound <= maxRound
1003, another set of nGrams is obtained and each set is sent to the Expansion Loop to see if they
result in identification of Relevant Facts 1003-1012. If all the rounds are completed without any
relevant facts 1003, then the process returns an empty array 1002.

[00740] Thus, Figure 10 is built on two loops. The outer loop goes from round 1 up to the
number of keywords. Hence, the number of keywords is the number of rounds in the outer loop.
In each round, subset groups of keywords are generated as nGrams. Each group of keywords is
sent to the Expansion Loop 1009 along with the entityCounts, hyponyms, dateRanges, query, and
queryVector.

[00741] For example, if the nGrams in a given round 1005 contain three sets of keywords,
each set is sent to the Expansion Loop 1009 until the Expansion Loop returns relevantFacts 1009,
1011, 1012. In the example where nGrams contains three sets of keywords, the following keyword
arrays will be sent one by one: nGrams[0], nGrams[ 1], nGrams[2] 1009.

[00742] Figure 11 depicts an example Expansion Loop

[00743] The expansion loop receives keywords, entityCounts, hyponyms, dateRanges,
query, and queryVector 1100. The keywords received are an array of keyword combinations
contained within a two-dimensional nGram array 1009 (Fig. 10).

[00744] As explained above, this example embodiment has six levels of Term Expansion
Processes starting from index 0 going up to index 5 (see “Six Levels of Term Expansion Processes”
above). Also, as stated above, both keywords and any existing hyponyms can undergo Term
Expansion. Therefore, their expansions need to be tracked and coordinated. In this example
embodiment, keywords will be allowed to undergo all six levels of expansion 1101. However,
hyponyms are only going to go through the first four levels of expansion 1101. Hence,
maxKeywordExpansions is set to 6 and maxHyponymExpansions is set to 4 1101.

[00745] The starting index of both expansions are set to 0 1102. keywordExpansionIndex
is set to 0 and hyponymExpansionlndex is set to 0 1102.

[00746] Hyponym expansion occurs in the outer loop 1104 — 1113. Keyword expansion
occurs in the inner loop 1107 — 1113. This means that when hyponyms are at expansion 0, all the
keyword expansions are conducted. If no Relevant Facts are found, then the hyponyms expansion

level will increase by 1, and all the keyword expansions are conducted again.
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[00747] The outer hyponym expansion loop continues as long as hyponymExpansionIndex
< maxHyponymExpansions 1104. Once that is no longer true, the process returns an empty array
1103.

[00748] However, if the hyponymExpansionlndex < maxHyponymExpansions 1104, then
each hyponym in the hyponym array is expanded into newHyponyms based on the current value
of the hyponymExpansionlndex 1105. For example, if the hyponymExpansionIndex is 2, then any
existing hyponyms will be augmented with a list of their Absolute Synonyms 1105 as Absolute
Synonyms is index 2 on the “Six Levels of Term Expansion” (see above). If the hyponyms array
is empty, then there is no ForEach value, and the empty array remains unchanged 1105.

[00749] Once any existing hyponyms are expanded 1105, the keywordExpansionlndex is
set to 0 1106. If the keywordExpansionlndex is less than the maxKeywordExpansions 1107, then
each keyword in the keywords array is augmented with the Term Expansion that corresponds to
keywordExpansionIndex 1109. At this point, the newHyponyms contains the expanded hyponyms
1105, and the newKeywords contains the expanded keywords 1109, with each expansion occurring
on their respective levels.

[00750] The nGramSearch process is sent the newKeywords, entityCounts, newHyponyms,
dateRanges, query, and queryVector 1110. (See Figure 12 for an example nGramSearch.)
[00751] If the nGramSearch returns extractedFacts 1110, 1112, then the process returns the
extractedFacts 1113. If no extractedFacts are returned 1110, 1112, then the
keywordExpansionIndex is incremented 1111. If the keywordExpansionlndex is not less than
maxKeywordExpansions 1107, then the hyponymExpansionlndex is incremented 1108 and
another outer loop is conducted if the hyponymExpansionlndex < maxHyponymExpansions 1104.
If the hyponymExpansionIndex is not less than maxHyponymExpansions 1104, then the process
returns an empty array 1103.

[00752] After the keywordExpansionlndex is incremented 1111, if the
keywordExpansionlndex < maxKeywordExpansions 1107, then another inner loop proceeds
starting at 1109.

[00753] Figure 12 depicts an example nGramSearch

[00754] The NGramSearch receives keywords, entityCounts, hyponyms, dateRanges,
query, and queryVector 1200. At this point, the received keywords are from the output of an
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expansion process 1109 (Fig. 11) on an array of keywords that are inside a two-dimensional nGram
array 1009 (Fig. 10).

[00755] The NGramSearch process creates the Query Filter from the combination of
keywords, entityCounts, hyponyms, dateRanges, and queryVector 1201. Query Filters typically
include a queryVector plus optional metadata filter criteria. However, it is possible to construct a
queryFilter that solely contains at least one metadata filter criterion. The Query Filter gets sent to
the vector database, which replies with the Top-K hits 1202. If there are no hits 1204, then the
process returns an empty array 1203. If there are hits 1204, then text for the corresponding chunks
is retrieved from the SQL database using the text ranges in the payloads of the hits 1205. At 1205,
chunks are the variable containing the retrieved texts.

[00756] The chunks are sent along with the query to the Relevant Facts Extraction Process,
which returns the relevantFacts array 1206. The relevantFacts array and query are sent to the Time
Categorical Validation Subprocess, which removes any facts from the array that do not refer to the
same time orientation as the query 1207. The relevantFacts array and query are then sent to the
IRL Categorical Validation Subprocess, which removes any facts from the array that do not have
the same reality orientation as the query 1208. The relevantFacts array and query are then sent to
the Prepositional Categorical Validation Subprocess, which removes any facts from the array that
do not contain information specific to all the prepositional phrases in the query 1209.

[00757] As explained above, the Indexical Time Response Calculation is applied if the
Indexical Time Query Rewrite altered the original query 1210. If invoked, this process appends
indexical time calculations that thereby answer the original query 1210.

[00758] Finally, the process returns the relevantFacts array which may or may not contain
any facts at this step 1211.

[00759] Example ISAR Storage Embodiment

[00760] ISAR is an Intelligent Storage and Retrieval system and method. Figures 7-8
illustrate one example ISAR storage embodiment. Figures 9-12 illustrate one example ISAR

retrieval embodiment. Figures 9-12 are described immediately above. This section describes

Figures 7-8.
[00761] Figure 7 depicts an example Document Chunking embodiment.
[00762] The document can be converted to FFs using a BSD FF Pipeline 700. Figures 1-6

98



depict an example BSD Pipeline.

[00763] The document can be assigned a unique ID called Docld 700. This can be done by
simply incrementing an integer value or by using industry-standard UUIDs. Any process that
guarantees a unique ID per ISAR implementation can be used.

[00764] After FF conversion 700, the document can be split into paragraphs 701. The
paragraph index (P) can be set to 0 [700]. The paragraphs are looped through one by one 702, 706
until there are no more paragraphs and the process is done 702-703.

[00765] Each individual paragraph can be ingested using the Ingest process 705. Ingesting
a single paragraph can be referred to as a P1 Chunking Process. Figure 8 depicts an example
Ingestion Process embodiment.

[00766] Every three paragraphs can be combined and ingested 705. Ingesting three
paragraphs can be referred to as a P3 Chunking Process.

[00767] Every five paragraphs can be combined and ingested 705. Ingesting five paragraphs
can be referred to as a PS5 Chunking Process.

[00768] Every sentence in the current paragraph can be ingested as well 707-709. The
ingestion of individual sentences can be referred to as an S1 Chunking process. 708 depicts
ingesting each individual sentence.

[00769] The third argument passed to the Ingest process 704, 708 is a representation of the
chunk’s text range. Any representation that allows the system to identify the paragraphs and/or
sentences can be used as range value.

[00770] In this example, “P_P” would be passing the index of the current paragraph (e.g.,
“7_7” for the eighth paragraph given that the index starts at 0) [704]. For this paragraph, “P-2 P”
equates to “5_7” for the P3 chunk; “P-4 P” equates to “3_7” for the PS5 chunk 704.

[00771] Likewise, “P_P__ S” stands for inserting the current paragraph index and the current
sentence number 708. Hence, the second sentence of the paragraph index 7 is: “7 7 2”.

[00772] In this way, or something similar, the text for the paragraphs and/or sentences that
include the point can be readily retrieved from an SQL database during retrieval 1205 (Fig. 12).
[00773] Figure 8 illustrates an example Payload Ingestion Process

[00774] The process receives text, Docld, and the TextRange 800. A unique point ID

(Pointld) is generated by a Point ID Generation Process 801. This process can use an incrementing
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integer or an industry-standard UUID. Any method that ensures that each point has a unique value
can be used here, provided that the chosen vector database supports the format. For example,
Qdrant solely supports integers and UUIDs. Therefore, one of these must be generated when using
a Qdrant vector database.

[00775] The text is converted into a vector embedding (Vector) using a Vector Embedding
Process 802. There are many methods known in the art for creating vector embeddings as they are
commonly used for information storage and retrieval. However, vector embeddings are a weak
way of performing searches. The inventive steps herein minimize (if not eliminate) the vector
search component during retrieval. For example, if the top 10 hits are going to be sent to the
Relevant Facts Extraction Process, no vectors even need to be compared if there are only 1 to 10
hits. ISAR systems and methods overcome the weaknesses of the commonly used vector
embedding methods by minimizing and/or eliminating their role in the search process. While
vector embeddings are well-known in the art, they are the problem that needs to be fixed (not the
solution in and of themselves).

[00776] Vector embeddings can be “fixed” using Keywords, Entity Counts, Date Ranges,
and Hyponyms during storage 803. They are further fixed with Selective Synonyms, Related
Words, Holonyms, and Ngram Searching at the time of retrieval.

[00777] In an example Qdrant embodiment, the ID, vector, and payload get stored as point
804. The payload consists of the combination of Docld, TextRange, Keywords, Entity Counts,
Date Ranges, and Hyponyms fields 804. As a reminder, the hypernyms of the chunk are stored in
the Hyponyms field, because during retrieval, it is the hyponym of the hypernym that is sought (e.g.,

“What color...” means “What hyponym of ‘color’...,” hence the hypernym “color” needs to be in
the Hyponym field).
[00778] The Payload Ingestion Process can be referred to as a S1 Chunking Process when

a single sentence is being ingested. It can be referred to as a P1 Chunking Process when a single
paragraph is being ingested. It can be referred to as a P3 Chunking Process when a three-paragraph
chunk is being ingested. It can be referred to as a PS Chunking Process when a five-paragraph
chunk is being ingested.

[00779] FF S1 Search

[00780] An ISAR system or method can include an Ngram Search, an FF S1 Search, or
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both.

[00781] An FF S1 Search is actually an ISAR implementation of an FF MCI.

[00782] Thus, documents can be ingested in accordance with the example ISAR storage
embodiment depicted in Figures 7-8. The one caveat is that a S1 Chunking Process must be
included. Moreover, the payload of each chunk can contain a field denoting whether the chunk is
a“S1,” “P1,” “P3.” or “P5.” In fact, such a field can also be included during Ngram Searching as
well. This allows for a query filter to exclude all “P1,” “P3,” and “P5” chunks and solely consider

the vectors generated from “S1” chunks.

[00783] Given that the document has been converted into FFs, every S1 is an individual FF.
[00784] Thus, the query can be sent to an LLM. For example, “What is the color of the sun
when viewed from outer space?” can be sent to an LLM.

[00785] The output of the LLM can be converted into FFs using a BSD FF Pipeline.
[00786] Each FF can be converted into a vector using a Vector Generation Process.
[00787] A S1 Query Filter Process can construct a query filter that solely searches single-

sentence vectors by using “S1” as a prefilter. The Query Filter Process can include the S1 prefilter
criteria, and an FF vector. In this way, only the vectors of S1 chunks will be searched.

[00788] The FF S1 Search Process can use the S1 Query Filter Process to submit queries
for each FF generated from the LLM response, thereby retrieving top-k hits for each of the FFs
(where “k” is a number).

[00789] The FF S1 Search Process can then send the aggregate text for the hits to the
Relevant Facts Extraction Process along with the query. The Categorical Validation Subprocesses
can be used to deterministically validate various aspects of any returned facts.

[00790] The FF S1 Search Process can return the extracted facts array, which may either
contain facts or be an empty array.

[00791] Some ISAR embodiments may use an FF S1 Search first. The FF S1 Search utilizes
the full capabilities of an LLM, and therefore, will often pinpoint the precise relevant facts
instantaneously and efficiently. If the FF S1 Search returns an empty array (which can happen if
the LLM response was incorrect), then it can use an Ngram Search to find the correct information.
[00792] The combination of the two searches allows LLM generation to be the source when

the answer is correct and provides an immediate solution for obtaining the correct answer when
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the LLM is wrong.

[00793] Like the Ngram Search, the FF S1 search can be used in RAG-based chatbots or for
any other application that requires an information storage and retrieval system.

[00794] Example FF S1 Search Process

[00795] Figure 13 illustrates an example FF S1 Search Process

[00796] The process receives a query 1300. An LLM is prompted to answer the query. The

response is stored as LLMResponse 1301. An array of FFs are then generated by a BSD FF
Pipeline from the LLMResponse 1302. This FF array is stored as llmResponseFFs 1302. The
following variables are initialized: numFFs, curFF, and aggregateText 1303. numFFs represents
the length of the llmResponseFFs array and curFF is initialized to zero 1303. The variable
aggregateText is an empty array 1303.

[00797] The ISAR querying loop begins at 1304. If the curFF is less than the numFFs 1304,
the process continues 1305. The Vector Generation Process constructs the ffVector from the
llmResponseFFs array member at the curFF index 1305. The Query Filter is then constructed by
the Query Filter Process using the S1 prefilter criteria and the ffVector 1306. Notice that FF S1
Searches operate on FF vectors, whereas nGram Searches operate on query vectors (the user query
transformed into a vector).

[00798] Top K Hits are then received from ISAR’s utilization of the Query Filter 1307. If
there are no Top K Hits 1309, the curFF variable is incremented 1308 and the ISAR querying loop
is restarted 1304.

[00799] If there are any Top K Hits 1309, their corresponding text chunks are retrieved from
the SQL database by the Chunk Retrieval Process 1310. These chunks are then appended to
aggregateText array 1311. After appending the chunks to aggregateText array 1311, the curFF
variable is incremented 1308 and the loop is restarted 1304.

[00800] Once the curFF variable is no longer less than the numFFs variable 1304, the ISAR
querying loop is finished 1312.

[00801] The Relevant Fact Extraction Process takes in the query and the aggregateText
array created by the ISAR querying loop 1304-1311 and returns the extractedFacts 1312. The
extractedFacts and query are sent to the Categorical Validation Subprocesses, which remove from

the extractedFacts any facts that do not pass the Categorical Validations 1313. The FF S1 Search
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process then returns the extractedFacts array, which may or may not contain any entries at this

point 1314.
[00802] Ngram FF S1 Search
[00803] The FF S1 Search is essentially a regular vector search to find the nearest stored FF

to each target FF (each FF that was generated from the LLM response to the query). Given that
FFs are short, and given that shorter vectors can be strong, this can be an effective process.
[00804] However, an extremely powerful method for finding the closest stored FF is to use
an Ngram FF S1 Search which is a hybrid embodiment of an FF S1 Search fused with an Ngram
Search.

[00805] Asin FF S1 Search, the LLM is prompted for a reply, and the reply is split into FFs.
However, each of these target FFs acts as a query in a regular Ngram Search (except that the Query
Filter does not include hyponyms but does add the S1 filter criteria).

[00806] Thus, for each FF, the Retrieval Keywords Process returns a list of keywords where
the FF is in the input (not the user query); the Retrieval Date Ranges Process returns any required
date ranges using the FF as the input; and the Retrieval Entity Counts Process returns any required
entity counts using the FF as the input. The Query Filter is constructed using Keywords, Entity
Counts, Date Ranges, plus the added S1 criteria (so that no P1, P3, or PS5 chunks will be
considered).

[00807] Alternatively, the embodiment may solely ingest S1s and therefore no longer need
to store an “S1” designation in the payload (as only S1s exist). Likewise, the query filter will no
longer need to require S1 as well. Such embodiments can be constructed for Ngram Searching, FF
S1 Search, and Ngram FF S1 Search.

[00808] The Relevant Facts Extraction Process does indeed receive the user’s query to
determine relevancy.

[00809] The Categorical Validation Processes also receive the user’s query for validation.
[00810] If no relevant facts are found, then shorter groups of keywords (also known as
keyword ngrams) are each checked, the same as in a regular NGram Search.

[00811] No DFU expansion is used in the NGram FF S1 Search (as the objective is to find
the closest FF to the target FF). (DFUs are disclosed below.)

[00812] In this way, keywords, entity counts, date ranges, term expansion, fact extraction,
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and more are all used to find the closest stored FF to each target FF (rather than relying on vector

search alone).

[00813] This is a very powerful implementation of an FF MCI.
[00814] Range Consolidation Process
[00815] The use of S1, P1, P3, and P5 chunks allow for additional coordination of both

expansion and contraction. A Range Consolidation Process can be used for contraction. A Range
Expansion Process can be used for expansion.

[00816] S1 vectors are stronger than P1 vectors; which are stronger than P3 vectors; which
are stronger than PS5 vectors. Hence: S1 > P1 > P3 > P5.

[00817] Consider a situation where relevant information is not contained in a single
sentence but is contained in multiple sentences within a P1. This means that the relevant
information is also found in the encapsulating P3 and PS5 as well. However, because P1 is a stronger
vector, the P1 hit should be above the P3 and P5 hits when the vector search is completed.
[00818] Likewise, if a single sentence does indeed contain the information, then it should
be above the encapsulating P1, P3, and P5 when vector search ranking is completed.

[00819] Where a P1 is above an encapsulating P3 and P35, the encapsulating P3 and P5 can
be discarded from the top hits before choosing the top-k hits to send to the Relevant Facts
Extraction Process.

[00820] Given that the hits contain the paragraph and sentence ranges, such a filtering
process is trivial and instantaneous to implement. Such a filtering process is herein referred to as
a Range Consolidation Process. A Range Consolidation Process can exclude paragraph-level
chunks that encapsulate any paragraph-level hit that is above the encapsulating paragraph-level
hit.

[00821] Range Expansion Process

[00822] Sometimes, an individual sentence may lack sufficient context to provide a fulsome
answer. A Range Expansion Process can be used to address this issue. In essence, where a S1is a
hit, the ST hit can be swapped with the encapsulating P1. In this way, the P1 with additional context
can be sent to Relevant Facts Extraction Process, and the S1 is still used to pinpoint which P1s are
most relevant.

[00823] If the single sentence S1 was indeed the sole relevant sentence, then the Relevant

104



Facts Extraction Process will remove the other sentences in the P1. But if some of the surrounding
sentences do contribute to a more fulsome response, then the Relevant Facts Extraction Process
will keep them. Hence, the Range Expansion Process combined with Relevant Facts Extraction
Process gives the best of all worlds.

[00824] DFU Cataloguing Process

[00825] An ISAR embodiment may include a DFU Cataloguing Process. A Discreet Factual
Unit (DFU) is a group of sentences that cannot be divided without information loss.

[00826] Recipes are an example of DFUs. Having only part of a recipe loses information
needed to perform the recipe. “How To’s” and other instructional texts are also DFUs (e.g., “How
to Open an Account,” “How to Crop an Image,” etc.). Sending only part of a “How To” loses
information needed to accomplish the steps.

[00827] Given that preferred ISAR embodiments are based on paragraph and sentence
ranges, resolving this issue is straightforward.

[00828] An ISAR embodiment can include an SQL table that has the beginning and ending
paragraph/sentence boundaries of any DFUs contained in the corpus.

[00829] Certain DFUs can be programmatically identified (such as using POS tagging to
locate a series of instructions and cataloguing the beginning and ending of the series). The table
can also be manually created. Those skilled in the art will know how to create such a table based

on the description contained herein.

[00830] The electronic storage of DFU boundaries is referred to as a DFU Cataloguing
Process.
[00831] Thus, the paragraph and sentence location of every fact returned from the Relevant

Facts Extraction Process can be checked to see if the fact is inside a DFU. If it is, then the fact can
be replaced with the entire DFU.

[00832] In this way, if part of a recipe is returned by the Relevant Facts Extraction Process,
a DFU Reconstruction Process can use the SQL DFU table to discover that the facts are inside a
larger DFU. The DFU Reconstruction Process can retrieve the full text of the DFU using the
paragraph/sentence boundaries and return the full DFU so that that the internal facts can be
replaced with larger encapsulating DFU.

[00833] Tabular DFU Construction Process
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[00834] ISAR embodiments that support DFU Cataloguing and DFU Reconstruction can be
used to store and retrieve tabular data in addition to narrative text.
[00835] Tabular data (such as csv, HTML tables, markdown tables, and relational database
tables) can be programmatically converted into DFUs on a per row basis. Each DFU can include
a series of bullets, each with the column name + row value preferably where each series of bullets
are preceded with the title, subtitle, and/or description of the table. Each DFU would therefore
contain the title, subtitle, and/or other meta data plus a series of bullets created from the
columnName/RowValue fields.
[00836] Each independent DFU can now be demarcated in the same manner as any other
DFU, and likewise, used for chunk expansion as well.
[00837] For example, consider a table that has a patient ID, patient name, and whether they
smoke. The title is Patient Smoking Habits. One entry in the table is 1077 (patient ID), John Smith
(patient name), and yes (whether they smoke). This can be converted into text containing all this
information. For example, an unordered list entitled “Patient Smoking Habits” could be created
where the column names are separated from the values via a semicolon as follows:

e Patient ID: 1077

e Patient Name: John Smith

e  Whether they Smoke: yes
[00838] Without this format, the words “whether they smoke” could be far removed from
“John Smith.” Moreover, the relationship of the word “yes” to the fact of John Smith’s smoking
habit would also be far removed. However, now the information is neatly organized by converting
rows into DFUs in this, or similar, manner.
[00839] A Tabular To Narrative DFU Process can convert tables into narrative text similar
to the above. The output narrative text is now a document that can be ingested into an ISAR system,
which each bullet is an S1 level chunk and the combined row bullets are a P1 level chunk. The
encapsulating P3 and PS5 chunks can include any preamble information included by the Tabular to
Narrative DFU Process such as table name, table description, etc.
[00840] On a per row basis, a Tabular to Narrative DFU process can create a narrative output
that includes table name, table description, and other table meta data followed by a

columnName/rowValue bullet list. Such output can then be ingested as described above.
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[00841] Retrieval proceeds as normal, with DFU Reconstruction automatically handling the
details.

[00842] Consider the query: “Does John Smith smoke?” Consider further that the following
chunk has been retrieved: “Patient Name: John Smith.” Since this is within a DFU, the chunk is
expanded to include the entire DFU, which is sent to the LLM or other application using the ISAR
system.

[00843] Now the LLM is not only receiving both relevant and complete information, but
also, it can simply present the information as-is in response to the query.

[00844] Thus, ISAR embodiments can provide rapid, 100% accurate responses to queries

for both narrative text and tabular data.

[00845] Augmenting Other RAG and Other Information Storage and Retrieval
Systems with ISAR
[00846] Various elements of ISAR can be added to other RAG implementations and other

information storage and retrieval systems to significantly improve accuracy and speed while
simultaneously reducing cost. Such combinations will be readily apparent to those skilled in the
art upon reading this disclosure.

[00847] For example, FFs can be used with such embodiments. Also, sentence-level
chunking combined with range expansion can be used, either alone, or in combination with FFs,
or in combination with other ISAR elements. For example, a RAG implementation that uses
semantic chunking can add sentence-level chunking as well. Any sentence-level hits can be
expanded back into the encapsulating semantic chunks before being sent to the requesting process
(just as S1s can be expanded to their encapsulating Pls; just as relevant facts can be expanded to
encapsulating DFUs).

[00848] Entity counts can be added either alone or in combination with other ISAR
elements. While elegant, they provide very significant performance boost. After all, any “who”
query immediately excludes every chunk that does not reference at least one person; any “where”
query immediately excludes every chunk that does not reference a location; and so on. This is a
powerful way to pinpoint precisely relevant chunks.

[00849] Likewise, the iterative searching for relevant facts can be combined with other

search methods (such as query rewriting).
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[00850] Also, the relevant facts extraction process can be used to aggregate relevant facts
in addition to or in lieu of stopping the search the moment facts are found. In this manner, multiple
relevant facts from multiple chunks can be aggregated for a more fulsome response.

[00851] Due to the power of the disclosed filtering and expansion processes, such can be
applied to embodiments that do not even use vector embeddings (such as keyword-based
implementations). Including an ISAR element in any RAG implementation or in any information
storage system or in any information retrieval system or in any information storage and retrieval
system falls within the spirit and scope of this disclosure.

[00852] Also, throughout this disclosure, a vector database search has been described as
submitting a query filter to the vector database where the query filter contains both the query vector
and the payload conditions. Such terminology is not meant to be restrictive. On the contrary, it is
meant to convey constructing a query specific to the vector database(s) used in the embodiment
such that a vector search is only conducted on points that pass the conditions expressed in the
payload. Also, as stated above, even the vector search itself is optional.

[00853] Knowledge Sources

[00854] There are three information sources that a Large Language Model (LLM) or chatbot
can use when answering a question: 1) using internal knowledge learned during training (called
parametric knowledge); 2) using an external source of information (such as ISAR); and 3) using
both internal and external knowledge. Herein, LLM and chatbot shall be used interchangeably to
convey prompting a language model and getting back a response. Querying an LLM and getting a
response based solely on internal knowledge shall be referred to as Parametric QA. Querying an
LLM and getting a response based solely on external knowledge shall be referred to as External
QA. Querying an LLM and getting a response based on the combination of both internal and
external knowledge shall herein be referred to as Hybrid QA.

[00855] External QA involves retrieving information from at least one external source and
providing that information (or a derivative thereof) to the LLM. For example, consider the
following query: “Who was the first president of the United States?” Relevant information from
Wikipedia could be retrieved. The retrieved information can be sent to the LLM along with the
query; and the LLM can be instructed to answer the query based solely on the provided content.

[00856] Where speed, accuracy, and optimal relevance are priorities, an ISAR system can
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be used as the external knowledge base for both External QA and Hybrid QA.

[00857] Hybrid QA would allow the LLM to use both the provided information and the
LLM’s internal knowledge when answering the query.

[00858] This present invention discloses systems and methods for 100% accurate
parametric-based, external-based, and hybrid-based responses for LLMs and chatbots. This
includes 100% accurate QA, exposition, and summarization.

[00859] Hallucinations

[00860] A hallucination in the context of LLMs typically refers to instances where the
model generates information that is not grounded in its training data or reality—essentially,
making things up. In this present disclosure, an LLM dutifully reproducing learned narratives is
not categorized as a hallucination. Moreover, when the provided narrative conflicts with reality, it
is the LLM’s job to present the narrative.

[00861] For example, a properly functioning LLM based on the Flat Earth Society’s website
will state that the earth is flat. From the perspective of the information provided, that is the 100%
accurate response.

[00862] Hence, for this disclosure, a hallucination is either something that contradicts the
knowledge source or is unsupported by the knowledge source. In other words, “hallucination rate”
as used herein refers to faithfulness — the degree to which the response remains faithful to the
provided information (whether provided during training and/or at the time of query). This present
disclosure solves perhaps the biggest issue in AI — fully eliminating hallucinations.

[00863] Root Causes of Hallucinations

[00864] There are three reasons why LLMs deviate from the provided information. The
three causes of hallucinations are: 1) malformed queries; 2) incomplete information; and 3) Noun-
Phrase Collisions.

[00865] First, if a query is malformed then there is no possibility of an accurate response.
Malformed queries either need to be corrected or rejected. Disclosed herein are methods for
correcting common types of malformed queries: complex queries, misspellings, grammatically
incorrect, and ambiguous queries. After the query has been corrected, it can be sent to an LLM
fine-tuned on detecting whether the query can be handled by the target LLM or not. The query can
be rejected if it cannot be handled by the LLM. Thus, the target LLM will only be receiving
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properly formed queries, thereby eliminating the first cause of hallucinations.

[00866] Second, if an LLM does not have the complete information, this too can result in
hallucinations. This is why ISAR sends entire DFUs. Doing so eliminates this particular cause of
Al hallucinations.

[00867] Third, the remaining cause of hallucinations is the most common cause of
hallucinations. The vast majority of hallucinations occur when LLMs provide a wrong answer to
an appropriately written query even though the LLM has access to the full answer. All such
hallucinations are caused by Noun-Phrase Collisions.

[00868] Key Discovery

[00869] LLMs can, and often do, hallucinate even when they have been trained on correct
information. The present inventor has discovered the root cause of all of these hallucinations. The
root cause is herein referred to as Noun-Phrase Collisions.

[00870] The present inventor was the first to discover that LLMs self-organize around noun
phrases during pretraining. This discovery led to the discovery of Noun-Phrase Collisions as the
cause of every hallucination where the LLLM has been trained on the correct information. A Noun-
Phrase Collision occurs when two noun phrases refer to different entities yet have high vector
similarity scores.

[00871] The present inventor first discovered Noun-Phrase Collisions when conducting
experiments in which the LLM was provided clear and correct information, yet the LLM still
hallucinated nevertheless. Consider the following real-world example from GPT-4:

[00872] Prompt:

[00873] Based on the following passages, tell me about Afonso?

[00874] Passage 1: Afonso’s hair is blonde.

[00875] Passage 2: Alfonso is married to Gwen.

[00876] Response:

[00877] The passages provide information that Afonso has blonde hair and is married to a

woman named Gwen.
[00878] This is a hallucination. Alfonso, not Afonso, is married to Gwen. Now consider
another real-world example from GPT-4:

[00879] Prompt:
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[00880] Based on the following passages, tell me about Chuck?

[00881] Passage 1: Chuck’s hair is blonde.

[00882] Passage 2: Bartholomew is married to Gwen.

[00883] Response:

[00884] The passages only provide information that Chuck has blonde hair. There is no

further information about Chuck.

[00885] Notice that this response is 100% accurate, even though it is the exact same query
just using two different names. The difference is that Afonso and Alfonso have a high vector
similarity score (92.3%), whereas Chuck and Bartholomew have a lower vector similarity score
(76.0%). This present disclosure shall use ADA-002 to obtain the vector embeddings and uses
cosine similarity to compute the vector similarity scores. This convention is to provide uniform
examples, but the same applies across various methods known in the art for transforming text into
vector embeddings and various methods known in the art for computing their similarity scores.
[00886] In short, GPT-4 hallucinated because two different noun phrases (Alfonso and
Afonso) refer to two different entities, yet they have high vector similarity scores. In other words,
GPT-4 hallucinated because of a Noun-Phrase Collision. After discovering Noun-Phrase
Collisions where external knowledge was provided, the present inventor then conducted
experiments on LLM parametric knowledge by tracing the hallucinations back to the training
corpus, confirming that parametric hallucinations are due to the exact same cause.

[00887] The above external-knowledge Noun-Phrase Collision caused GPT-4 to conflate
facts about Afonso with facts about Alfonso. The present inventor conducted similar experiments
on internal knowledge (i.e., parametric knowledge). For example, when asked about the mother of
Alfonso 1I, GPT-4 gave information about Afonso VII. This is an example of a parametric
hallucination as the LLM gave the answer based on its internal knowledge (not based on externally
provided content). An analysis of the internet training corpus confirmed this to be due to a Noun-
Phrase Collision.

[00888] Every LLM hallucinates due to Noun-Phrase Collisions. For example, Noun-Phrase
Collisions cause GPT-3.5 Turbo to wrongly conflate facts about magnesium with facts about
calcium. They also cause GPT-3.5 Turbo to wrongly conflate facts about a Roth IRA with facts
about a Roth 401k.
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[00889] Noun-Phrase Collisions

[00890] The present inventor sought to understand why LLMs often conflate information
about Afonso with Alfonso, yet they do not wrongly conflate information about Chuck with
Bartholemew. The present inventor was the first to realize that the reason comes down to the
similarity score. The vector embeddings for Alfonso/Afonso have a similarity score of 92.3%,
whereas the vector embeddings for Chuck/Bartholemew have a similarity score of 76.3%.
[00891] The present inventor tracked down the origin of literally hundreds of hallucinations.
They were all caused by such Noun-Phrase Collisions — they were all traceable to the LLM
wrongly treating disparate noun phrases as synonyms due to their high vector similarity scores.
[00892] It is important to note that LLMs typically convert text into numerical tokens. For
example, GPT-40 converts “Chuck” into a single token: [187874]. Bartholomew is converted
into four tokens: [4622, 134710, 747, 86]. Afonso is converted into two tokens: [32, 104460].
Alfonso is converted into [2348, 104460].

[00893] For purposes of this disclosure, a high vector similarity score can refer to a high
vector similarity score on the entire noun phrase and/or a high degree of similarity between a subset
of the noun phrase’s numerical tokens. The latter is a straightforward criterion. For example,
consider how GPT-4o represents 1968 and 1969. GPT-40 converts 1968 into two tokens: [6514,
23]. GPT-40 converts 1969 into two tokens: [6514, 24]. Notice also that Afonso and Alfonso share
token 104460 in the second position.

[00894] This is important because GPT models do not see “1968” or “1969” as both of these
concepts are outside their vocabulary (i.e., there is no single token dedicated to expressing either
of them). With this mind, consider text that contains one event that occurred in 1968 ([6514, 23])
and another event that occurred in 1969 ([6514, 24]). During response generation, when the LLM
outputs token 6514, it can wrongly conclude that it has two token paths to choose from (either
token 23 or token 24). If it chooses the wrong one, then it will produce a hallucination by wrongly
attributing something that happened in 1968 with something that happened in 1969.

[00895] These token-level collisions are responsible for LLMs having extraordinarily high
hallucination rates for dates, part numbers, PubMed IDs, and more.

[00896] When dealing with language (i.e., narrative text), text similarity scores can be

measured based on the vector embeddings for the text themselves. Text similarity scores can also
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be computed by looking for identical tokens (such as the shared tokens between 1968 and 1968).
The inventive systems and methods described herein resolve both types of Noun-Phrase Collisions.
[00897] Noun-Phrase Collisions Will Always Exist in LLM Parametric Knowledge
[00898] Noun-Phrase Collisions exist because LLMs are typically trained for creative
language generation. Therefore, they are trained to recognize that words such as “car,”
“automobile,” and “vehicle” can often be used interchangeably, e.g.: “My automobile broke down.
I don’t like this car. This is the last vehicle ’'m going to buy.” In this example, the LLM needs to
understand that all three words refer to the same thing, and it needs to do so in a mathematical
manner.

[00899] Likewise, when generating a response, it needs to know the variety of words that it
can choose from to generate a convincing answer.

[00900] The present inventor made a discovery previously unknown to the industry. Noun-
Phrase Collisions occur because the LLM typically learns to treat semantically similar words as
synonyms during pretraining. During instruction fine tuning, many of the errant associations get
overwritten. However, it is impossible to finetune all the errant associations—paving the way for
future errors (called “hallucinations”).

[00901] While conflating “Alfonso” and “Afonso” may seem somewhat intuitive, consider
the fact that GPT-3.5 Turbo routinely conflates “magnesium” and “calcium.” That is because the
magnesium/calcium vectors have an 87.2% similarity, and the instruction tuning was not sufficient
for the LLM to learn that they refer to different things despite their high similarity score.

[00902] The fact that fine tuning overcomes these errors is seen in OpenAl’s continual
retraining of its models to fix widely publicized hallucinations, something they acknowledge in
the GPT-4 system card. “For tackling open-domain hallucinations, we collect real-world ChatGPT
data that has been flagged by users as being not factual....”

[00903] Noun-Phrase Collisions are born during model pretraining. Noun-Phrase Collision
in the pretrained model shall be referred to as inherent Noun-Phase Collisions. Subsequent
instruction tuning teaches the model to overcome the inherent Noun-Phrase Collisions. For
example, GPT-4’s pretraining has a Noun-Phrase Collision for Alfonso and Afonso. The original
instruction tuning did not correct for this issue (e.g., GPT-4-0125-preview). After the

Afonso/Alfonso collision became public, OpenAl retrained GPT-4 using instruction tuning to

113



correct for some of the inherent collisions (e.g., GPT-4-0613). The change in GPT-4’s behavior
regarding Afonso/Alfonso demonstrates that the Noun-Phrase Collisions are indeed overcome
during instruction tuning.

[00904] However, the problem is that it is impossible to train away all inherent Noun-Phrase
Collisions. Thus, each LLM remains ready to hallucinate each time that a user’s query evokes
an inherent Noun-Phrase Collision that was not corrected during instruction tuning.
[00905] For example, GPT-4 once routinely conflated “Alfonso” and “Afonso.” OpenAl
used fine tuning to fix some of the errant conflations, allowing later models to make fewer
mistakes. However, not all Alfonso/Afonso conflations were fixed. The conflation is only fixed
when a user types in a query that is very similar to the one(s) used during fine tuning. For other
queries, GPT-4 still wrongly conflates Afonso and Alfonso.

[00906] This exemplifies one problem with trying to fix the problem through fine tuning.
When fine tuning on facts, the LLM does not tend to generalize as well as it does when fine tuning
on behavior. You may fix the exact, highly-publicized queries, but other queries may still
experience the errant conflation.

[00907] Second, when LLMs are trained on behavior they can become increasingly stronger
and more robust (i.e., better at performing the behavior). However, when LLMs are trained on
facts they become increasingly worse with each and every added fact. The increase in error rate is
literally linearly related to the number of fine-tuned facts.

[00908] For example, consider an LLM that can perfectly answer virtually any question
regarding cows but hallucinates on questions about dogs. Rather than going back to pretraining,
the LLM maker decides to “fix” the publicized dog hallucinations through fact-based fine tuning
instead. Unfortunately, for every one new query about dogs that gets added in, the LLM forgets
how to answer two queries about cows. While the hallucination rate for the publicized dog queries
gets “fixed,” the overall hallucination gets much worse.

[00909] This paradox is known as catastrophic forgetting. One can accurately conceptualize
fine tuning on facts as creating an idiot savant. The LLM will indeed parrot back the provided
facts, but it will also develop a degree of “dementia” or “amnesia” in other areas.

[00910] That is because LLMs have a finite number of parameters (the mechanisms they

use for storing both facts and learned behaviors). Fine tuning means that some parameters that
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once handled one or more facts must now be reallocated (i.e., they are overwritten) to account for
the new fact. Thus, OpenAl’s stated method of dealing with hallucinations actually increases the
overall hallucination rate of their models instead.

[00911] Understanding the above is helpful in understanding how to finally solve the
problem of LLM hallucinations once and for all. First, it is helpful to know that LLMs cannot be
finetuned to learn all facts about everything. The paradox of catastrophic forgetting ensures this.
Second, it is helpful to know that LLMs often erroneously conflate references to different nouns
when those references have a high similarity score.

[00912] In other words, there is no way to eliminate Noun-Phrase Collisions from LLM
parametric knowledge. Nor is there any way to fully eliminate the Noun-Phrase Collisions within
the models’ weights and biases (i.e., parameters) due to catastrophic forgetting.

[00913] Thus, eliminating hallucinations requires accepting the existence of such collisions,
and then, fully addressing the issue head on.

[00914] Noun Phrase Collision Detection Process

[00915] In order to address Noun-Phrase Collisions, some embodiments of the systems and
methods described herein include a Noun-Phrase Collision Detection Process for identifying
Noun-Phrase Collisions in the user’s query.

[00916] Consider the following query from the RAGTruth hallucination corpus: “What are
the chemical and physical properties of magnesium and calcium?” GPT-3.5 Turbo produces a
hallucination when the passages depicted in Figure 14 are sent along with this query. That is
because the words magnesium and calcium are a Noun-Phrase Collision (and GPT-3.5 Turbo did

not learn to overcome this collision during fine tuning).

[00917] An embodiment for a Noun-Phrase Collision Detection Process can include:
[00918] a parts-of-speech tagging process;

[00919] a vector embedding process;

[00920] a text similarity measurement process;

[00921] where:

[00922] the parts-of-speech tagging process identifies the noun phrases in the text;

[00923] the vector embedding process transforms the noun phrases into vector embeddings;
[00924] the text similarity measure process identifies any pairs of vector embeddings whose
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similarity is greater than a given threshold.

[00925] Implementing each of the above processes and steps can be accomplished with off-
the-shelf technology. There are many NLP libraries for parts-of-speech (POS) tagging that can be
used to identify the noun phrases. There are many vector embedding models (such as ADA-002).
There are many methods for computing vector similarity (such as using cosine similarity).
[00926] By identifying noun-phrases that have high text similarity, the systems and methods
described herein identify whether the query can result in a hallucination or not. Hence, this novel
combination accomplishes something very useful over the current art.

[00927] For example, when the above embodiment is applied to the RAGTruth query in
Figure 14, it will: 1) identify the following noun-phrases: properties, magnesium, and calcium; 2)
transform them into vector embeddings; 3) identify that the vector embeddings for magnesium and
calcium have a high similarity score, and therefore are identified as Noun-Phrase Collisions.
[00928] Some embodiments may use a coreference resolution process to weed out noun
phrases that refer to the same entity. Consider the following query: “My car has a broken window.
What should I do with the vehicle?” The query after coreference resolution would be: “My car has
a broken window. What should I do with my car?”

[00929] Without coreference resolution, car and vehicle would wrongly be considered to be
Noun-Phrase Collisions, and due to their high similarity score, would be excluded from use in a
response to a user query. This would be a false positive.

[00930] That is because “car” and “vehicle” are both nouns that refer to the same entity, and
therefore, cannot be Noun-Phrase Collisions, despite their high vector similarity score.
Coreference resolution replaces all references to the same entity with one unified noun phrase.
Hence, embodiments using the coreference resolution process can reduce, if not eliminate, false
positives (where noun phrases that refer to the same entity are wrongly identified as Noun-Phrase
Collisions).

[00931] Other embodiments may add a process to compute the token IDs of the noun
phrases. Any noun phrases that share the same initial token(s) can be identified as Noun-Phrase
Collisions.

[00932] If the Noun-Phrase Detection Process identifies Noun-Phrase Collisions, then a

Query Splitting Process can be used to create separate queries that are devoid of Noun-Phrase
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Collisions.

[00933] Query Coreference Resolution Process

[00934] This is a novel application of coreference resolution. It is non-obvious that
performance can be significantly improved simply by applying coreference resolution to the query
itself. However, in light of the discovery of the noun phrase collision issue, the performance boost
becomes self-apparent. Applying coreference resolution on the query can eliminate noun phrase
collisions, and thereby avoid hallucinations when such collisions are removed.

[00935] Query Splitting Process

[00936] An elegant way of resolving noun-phrase collisions is to split the original query
into multiple queries such that each individual query is devoid of noun-phrase collisions.

[00937] For example, consider the following query found in the RAGTruth dataset: “What
are the chemical and physical properties of magnesium and calcium.” This can be split into two
queries: “What are the chemical and physical properties of magnesium?” and “What are the
chemical and physical properties of calcium?”

[00938] Notice how each query is now devoid of Noun-Phrase Collisions.

[00939] The Query Splitting Process may alternatively split queries based on topics. Such a
Query Splitting Process has many advantages. First, it will automatically separate Noun-Phrase
Collisions since each noun-based topic will already be split into separate queries. Thus, a Noun-
Phrase Collision Detection Process could be optional for such an embodiment.

[00940] Second, topical splitting also reduces the complexity of the query, thereby resolving
the issue of malformed complex queries while simultaneously getting rid of noun-phrase collisions
at the same time.

[00941] Consider the query once again: “What are the chemical and physical properties of
magnesium and calcium.” There are four noun-phrase based topics: chemical properties, physical
properties, magnesium, and calcium. The maximal split for these topics results in the following
four queries: “What are the chemical properties of calcium? What are the physical properties of
calcium? What are the chemical properties of magnesium? What are the physical properties of
magnesium?” Now the LLM has four queries that are each simple and devoid of noun-phrase
collisions.

[00942] A neural network (such as an LLM) can be finetuned to perform such splitting.
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However, embodiments seeking perfect accuracy can implement a novel neural BSD neural

network.
[00943] BSD Query Splitting
[00944] One example training embodiment could take a dataset of queries. These queries

can be transformed using a Spelling and Grammar Correction process to standardize them (and
thereby reduce the scope). The output of the Spelling and Grammar Correction process can be sent
to a BSD Coreference Resolution Process. The output of the BSD Coreference Resolution process
can be the training input.

[00945] The corresponding target outputs could be deterministically derived by identifying
all the noun phrases in each training input; then, constructing the split queries by preserving the
vocabulary and word order used; producing the maximal split of the identified noun phrases; and
sorting the queries according to the order in which the noun phrases appeared in the original query.
As areminder, deterministic sorting is required in BSD when a single training input is transformed
into multiple outputs. This ensures that there is only one correct split per input when doing so,
thereby ensuring that the conditions of BSD are met.

[00946] For example, in the example embodiment above, the target output for the query
should be arranged in the following order: chemical properties > physical properties > calcium >
magnesium (based on the chosen sorting method). Hence, the maximal split above would need to
be reordered to meet the deterministic BSD transformations: “What are the physical properties of
calcium?” “What are the physical properties of magnesium?” “What are the chemical properties
of calcium?” “What are the chemical properties of magnesium?” That is the one order allowed
given the chosen deterministic transformations (such as sorting on the word order in which the
noun phrases appear in the original query). Any other wording or sort order will be an error, and
therefore, result in a non-zero cost value by the loss function during training.

[00947] The resulting BSD Query Splitting neural network accurately reduces the
complexity of queries while simultaneously getting rid of query-based noun-phrase collisions.
Meanwhile, the BSD aspect ensures that the resulting split will be devoid of hallucinations itself.
Given the highly significant utility of the BSD Query Splitting process, it is inventive in its own
right.

[00948] During inference, queries can be sent to the Spelling and Grammar Correction
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Process and BSD Coreference Resolution. Such sharing of both for both training and inference
serves as a Scope Reduction Process. (See “Scope Reduction Process” above.)

[00949] The split queries can be iteratively and/or concurrently sent to the LLM. The user
can be presented with a concatenation of the results. Alternatively, a deduplication process can
remove redundant information. A process using an LLM for such extraction can be employed to
implement such a deduplication process. Alternatively, a derivative of the multiple responses can

be produced and then sent to the user or stored for future use.

[00950] Universal Antidote for 100% Accurate Responses

[00951] Parametric QA and Hybrid QA both include relying on the LLMs internal
knowledge. As stated above, the internal knowledge will always include some noun phrase
collisions.

[00952] Removing noun-phrase collisions from the query (such as through Query Splitting)

significantly improves accuracy above the current art of existing systems and methods. However,
due to the inherent noun-phrase collisions, there is no guarantee of 100% accurate output.
Parametric QA and Hybrid QA embodiments that demand 100% accuracy will have to correct the
LIM outputs.

[00953] A method called groundedness is common in the art. Groundedness attempts to
identify hallucinations by comparing the output to facts known in publicly accessible information.
In this manner, the answer is still derived 100% from the LLM’s parametric knowledge (providing
the LLM with maximal creativity and freedom) while simultaneously trying to measure the
accuracy through external sources.

[00954] Some groundedness implementations attempt to correct hallucinations once they
are identified.

[00955] Microsoft is one company that offers a groundedness service that includes the
option of automatic correction. This service is offered through the Microsoft Azure Groundedness
API. An independent third-party study found this service left 2 out of 3 hallucinations undetected.
Other studies show that groundedness fails to mitigate 88% of hallucinations. Moreover, Microsoft
has not shown any systematic way of avoiding hallucinations during its ‘correction’ process. In
other words, the approach used in the prior art can replace an accurate statement with an inaccurate

one, thereby adding an additional hallucination instead of eliminating one.
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[00956] This present invention discloses a novel form of corrective groundedness called FF

Corrective Groundedness Process.

[00957] One embodiment of an FF Corrective Groundedness Process includes:

[00958] an input querys;

[00959] an LLM;

[00960] a BSD FF Pipeline,

[00961] a list of reliable websites; and

[00962] an internet-enabled FF MCI;

[00963] where:

[00964] the input query is sent to the LLM;

[00965] the LLM response is sent to the BSD FF Pipeline;

[00966] the BSD FF Pipeline converts the response into FFs;

[00967] for at least one of the FFs, the FF MCI searches on the at least one FF from the list
of reliable websites via the internet to identify at least one source;

[00968] the FF MCI transforms the at least one source into at least one source FF (FFsrc);
[00969] the at least one FF is replaced with the closest matching FFsrc.

[00970] In this manner, it does not matter if the output from the parametric knowledge is

correct or not. After all, everything is replaced with known truth resulting in 100% accuracy.
[00971] The use of FFs overcomes the weaknesses of the groundedness methods disclosed
in the prior art (just as FFs overcome the weaknesses of other Low-Level and High-Level NLP
processes). FFs reduce information to their smallest divisible units, allowing for one to be swapped
with another. BSD FFs ensure that the units accurately reflect the information in the larger
sentences from which they are derived, thereby resolving the accuracy issue.

[00972] While such an embodiment can be 100% accurate, errors in the LLM response may
introduce irrelevant responses. In other words, erroneous LLM statements may be replaced with
accurate (but irrelevant) facts, thereby resolving the issue of hallucinations, but not fully
addressing the user’s request.

[00973] There is no doubt that the universal antidote offers significant advantages in its own
right, given that it does indeed eliminate hallucinations. Moreover, the potential for irrelevancy

typically only occurs when correcting erroneous statements.
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[00974] However, some embodiments may want to avoid noun-phrase collisions in the first
place and/or correct for their errors. The combination of eliminating query noun-phrase collisions
and using an FF MCI ensures both maximum relevancy and accuracy. Hence, avoiding noun-

phrase collisions may still be used along with the universal FF antidote to optimally address

relevancy.
[00975] Why RAG Fails to Eliminate Hallucinations
[00976] RAG has failed to eliminate hallucinations for two reasons. First, RAG retrievers

are so imprecise that they often require sending hundreds of potentially relevant chunks — even
when none of the chunks are relevant all.

[00977] Second, even when the correct information is sent, LLLMs can still hallucinate (due
to noun phrase collisions).

[00978] This disclosure resolves both issues with RAG. ISAR ensures that only relevant
facts are sent. Moreover, it lets the system know when no relevant facts are found. This resolves

the first issue.

[00979] The ABCs of Eliminating Hallucinations described immediately below resolve the
second issue. They provide the three systematic ways to fully address the issue of noun phrase
collisions.

[00980] ABC:s of Eliminating Hallucinations

[00981] Given the inherent existence of Noun-Phrase Collisions inside the LLM itself, and

given that these collisions result in hallucinations, there are only three ways to eliminate
hallucinations: 1) Avoid the noun-phrase collisions; 2) Bypass the noun-phrase collisions; and/or
3) Correct for the errors caused by the noun-phrase collisions. In this present disclosure, this shall
be referred to as the ABCs of Eliminating Hallucinations: (A)void, (B)ypass, and (C)orrect.
[00982] Systems and methods described herein achieve 100% accurate responses using any
of these separately or by combining them together. Given that all three can be combined, they
constitute a single system and single method.

[00983] The rest of this disclosure describes how to produce 100% accurate responses using
the ABCs of Eliminating Hallucinations.

[00984] Avoiding Noun-Phrase Collisions

[00985] Avoiding Noun-Phrase Collisions refers to avoiding sending noun-phrase
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collisions to the LLM. The processes for accomplishing this in Parametric QA have already been
disclosed (e.g., Noun-Phrase Detection Process, Query Coreference Resolution and Query
Splitting Process).

[00986] However, External QA involves sending passages along with the query. Thus, in
External QA, noun-phrase collisions must be removed from the query and the passages.

[00987] The Noun-Phrase Detection Process can identify whether any noun-phrase
collisions exist in the retrieved passages. And just like queries, passages can be split up by noun-
phrase topics to avoid noun-phrase collisions.

[00988] Consider the magnesium/calcium query previously discussed. Consider also the
passages that RAGTruth identified as relevant to the original query. (Figure 14) Now consider
only sending the calcium passages 1401, 1403 along with the calcium query, and only sending the
magnesium passage 1402 along with the magnesium queries (after the original query 1400 is split).
[00989] In this situation, it is now impossible to for LLM to wrongly conflate information
about calcium with information about magnesium, because it only has the correct information for
both at the time of the individual queries.

[00990] Processes for dividing queries and passages become straightforward the moment
those skilled in the art learn about this present inventor’s discovery of noun-phrase collisions.
Avoiding sending collisions is easy, once you know that such collisions exist and once you know
how to identify them.

[00991] A Topical Splitting Process can be used to split passages based on noun-phrase
topics. Alternatively, the Relevant Facts Extraction Process can be used, where the retrieved
passages are the input text and each individual query is submitted as the query. Hence, a query
split into four queries can incur four calls to the Relevant Facts Extraction Process (one per query).
The texts can either be all the passages, or the Topical Splitting Process can be used to also align
the texts being sent to the Relevant Facts Extraction Process with the individual query that is being
sent.

[00992] Another method is to combine Named-Entity Token Substitution and Noun-Phrase
Token Substitution along with the Noun-Phrase Detection Process. For example, the colliding
noun-phrases can be identified using the Noun-Phrase Detection Process. One of the colliding

noun-phrases can be replaced with a single token, in vocabulary noun phrase (for both the query
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and the retrieved passages). The Noun-Phrase Detection Process can determine if the noun phrase
collisions have been removed. If there is still a collision, another token can be chosen until the
collisions are removed. The LLLM can generate its response based on the rewritten query/passages.
The token(s) can be replaced with their original values. The final result can be sent to the user.
[00993] Since External QA does not rely on parametric knowledge, the above method
results in 100% accurate responses without any correction necessary.

[00994] Through these methods, noun-phrase collisions are eliminated; thereby eliminating
hallucinations as a result.

[00995] Bypassing Noun-Phrase Collisions

[00996] Eliminating noun-phrase collisions in queries and passages during External QA is
an example of Avoiding Noun-Phrase Collisions. Bypassing Noun-Phrase Collisions is distinct
from Avoiding Noun-Phrase Collisions, although they both can be used together.

[00997] The present inventor discovered that Noun-Phrase Collisions are an issue for non-
BSD generative tasks. In other words, noun-phrase collisions are not an issue for BSD generative
neural networks, nor are they an issue for non-BSD extractive tasks.

[00998] Extractive tasks are those that require pulling statements and/or words and/or
numbers out of supplied text verbatim. Any verbatim isolation of a subpart of a text is an extractive
task. A generative task refers to everything else, including sentence simplification. A neural
network that does not conform to BSD will experience noun-phrase collisions when
performing generative tasks. Hence, this is the secret behind the effectiveness of BSD.

[00999] As a reminder, the popular WebSplit dataset can give over sixty alternative outputs
for any given input. This type of training inherently creates noun phrase collisions. It creates
“choices” for the LLM to make. Contrary to popular belief, these choices do not lead to improved
performance. In stark contrast, they are the very cause of hallucinations themselves.

[001000] BSD does not give the LLM any conflicting routes to choose from. Hence, it creates
generative neural networks that are devoid of noun-phrase collisions — that are therefore 100%
accurate.

[001001] Thus, it is the training methods used in the art that create the noun-phrase collisions
in the first place. LLM pretraining is non-deterministic; thereby creating inherent noun phrase

collisions; thereby creating hallucinations.
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[001002] Noun-Phrase Collisions will always be an issue for all generative tasks performed
by non-BSD neural networks. Hence, BSD is the only way to create a neural network that is both
generative and 100% accurate.

[001003] There are two ways to bypass the noun-phrase collision issue for generative tasks:
use a BSD neural network; or convert the generative task into an extractive one. The construction
and use of BSD neural networks has already been disclosed elsewhere herein. This section
discloses how to convert a generative task into an extractive one — to achieve 100% accuracy by
bypassing the issue of noun phrase collisions altogether.

[001004] Almost any RAG implementation can easily be converted into an extractive
embodiment. The retriever can obtain chunks that are likely relevant to the provided query.
However, instead of asking the LLM to answer the query based on the chunks, the LLM can be
asked to extract the statements contained in the chunks that are relevant to the query. The extracted
statements can be sent to the user.

[001005] In fact, this is precisely what ISAR embodiments already do. Thus, ISAR is an
example of achieving 100% accuracy by bypassing the noun-phrase collision issue through
reliance on extractive tasks.

[001006] Embodiments seeking to improve relevancy when using regular RAG can convert
the passages to FFs using a BSD FF Pipeline. The LLM can be instructed to extract the FFs that
are relevant to the query. The output can be sent to the user as the response.

[001007] Embodiments seeking optimal relevancy along with 100% accuracy will use ISAR
to solely receive FFs that are already known to be relevant to the query. These FFs can be sent
directly to the user as the response.

[001008] Some embodiments may include a Natural Language Response Formatting Process
that converts the identified relevant statements into a natural language response. If an off-the-shelf
LLM is used, then this generative process can introduce hallucinations. In such embodiments, a
BSD FF-MCI can be used to correct for any errors afterwards.

[001009] BSD Natural Language Response Formatting Process

[001010] Alternatively, a BSD Natural Language Response Formatting Process can be used.
The creation of a 100% accurate BSD Natural Language Response Formatting Process is actually

straightforward where BSD FFs are involved. As a reminder, BSD FFs are created by first
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simplifying the sentences through a BSD Sentence Simplification Process and then applying a
BSD Coreference Resolution Process that has been trained on the same sentence structures created
by the BSD Sentence Simplification Process. This results in the BSD FF pipeline.

[001011] The creation of a BSD Natural Language Response Formatting neural network can
consist of sending multiple sets of text through the BSD FF pipeline. The corresponding output of
the BSD FF pipeline becomes the training input; and the text input into the BSD FF pipeline
becomes the target output. After all, the BSD FF pipeline ensures that there is a deterministic
relationship between the pipeline input and output. Hence, the inverse of a BSD FF pipeline is a
BSD Natural Language Response Formatting neural network.

[001012] The purpose of a BSD FF Pipeline is to split natural language sentences into much
smaller compact units with 100% accuracy. Thus, some embodiments may need to implement the
reverse with 100% accuracy (join multiple FFs into a single natural language response).

[001013] Figure 15 illustrates an example BSD Natural Language Response Formatting
Training Set Generation Process

[001014] The process receives an array of Texts 1500. The following variables are initialized:
trainingSetlnputs, trainingSetOutputs, textsSize, and textsIndex 1501. trainingSetInputs and
trainingSetOutputs are empty arrays which will hold the training input / output pairs for the model
1501. textsSize is the length of the received Texts array and textsIndex is initialized to 0 1510.
[001015] The training set population loop begins at 1503. If the textsIndex is less than the
textsSize 1503, the process continues 1504. The BSD FF Pipeline creates an FFs string from the
Texts array member at the current textsIndex 1504. The created FFs string is added as a new
member to the end of the trainingSetInputs array 1505. The original Texts array member at the
current textsIndex is added as a new member to the end of the trainingSetsOutputs array 1505. The
textsIndex is incremented by one 1502. When the textsIndex is no longer less than the textsSize
the training set population loop is finished 1503.

[001016] Once the training set population loop is finished, the trainingSetInputs and
trainingSetOutputs array are returned as a 2-dimensional array which can be used to train a model
to join multiple FFs into a singular natural language sentence 1506.

[001017] Now the user can receive 100% accurate responses in natural language format,

without the LLM ever being directly asked to answer the query itself. A neural network trained on

125



such a dataset creates a Natural Language Response Formatting Process that can join together
multiple FFs with 100% accuracy.

[001018] ISAR + BSD Natural Language Response Formatting

[001019] Such a process can easily be combined with ISAR to present the FFs returned by
ISAR in more natural sounding language, with zero information loss.

[001020] Figure 16 illustrates an example ISAR Query Response with BSD Natural
Language Formatting

[001021] The process receives a query 1600. The query is then sent to an ISAR embodiment
which returns a string of FFs 1601. The FFs string is passed to a BSD Natural Language Formatting
Neural Network which returns the FFs string transformed to a naturalLanguage string 1602. The
naturalL.anguage string can then be returned 1603.

[001022] With FFs, ISAR, and the BSD Natural Language Formatting Process, obtaining
natural sounding answers that are 100% accurate is finally this easy.

[001023] Correcting Noun-Phrase Collisions

[001024] As stated above, there are three ways to address the noun-phrase collision issue and
thereby achieve 100% accuracy: Avoid noun-phrase collisions; Bypass the noun-phrase collision
issue altogether; and/or Correct for errors caused by noun-phrase collisions.

[001025] The elements and steps for all three have been disclosed above, as the BSD FF-
MClT is an example embodiment of a Correction Process.

[001026] Query Blinded Presentation Process

[001027] Another novel method of transforming FFs into natural language is herein referred
to as a Query Blinded Presentation Process. Facts received from ISAR can be converted to natural
language by sending them to a Query Blinded Presentation Process. This process prompts an LLM
to present the facts in natural language, without informing the LLM of the user’s query.

[001028] Notice that this novel method only works when the precise facts are provided. In
other words, such a method would not be used with regular RAG (since regular RAG sends
hundreds of chunks). In such a situation, the user would receive a response containing tens of
thousands of characters — a response that may or may not even contain the answer somewhere
inside.

[001029] Since ISAR sends FFs, an LLM can be prompted to present these facts in natural
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language. Internal testing from this author has confirmed that LLMs turn the presentation task into
a generative Al task when the query is provided along with the instruction. However, a process
that blinds the LLM to the query consistently results in accurate natural language output.
[001030] Where regular RAG is used, a two-step or three-step combination can be used. The
Relevant Facts Extraction Process can extract relevant facts (along with Validation Subprocesses),
and then, the Query Blinded Presentation Process can provide the result. A three-step
implementation would be to first convert the retrieved chunks into FFs and then performing the
prior two steps.

[001031] Putting it all Together

[001032] This filing began with disclosing the novel inventions of BSD neural networks,
creating FFs from BSD Neural Networks, and the use of Model Correction Interfaces (MClIs) —
including FF MCI. It then disclosed ISAR, an innovative system and method for rapidly retrieving
FFs from an external knowledge base that are relevant to the user’s query. It then disclosed the
ABCs of hallucination elimination: Avoiding noun-phrase collisions; Bypassing the noun-phrase
collision issues; and/or Correcting for errors caused by noun-phrase collisions. It concludes with
methods to convert FFs back into natural language.

[001033] By combining the above, 100% accuracy can be achieved even on the most-
complex, most-sophisticated NLP tasks, including: Question/Answering (QA), lengthy
Exposition, and Summarization (see Figures 17-19).

[001034] ABCs of 100% Accurate Question and Answering (QA)

[001035] ABCs: [ABC]. The prior disclosure focused on the QA task and demonstrated how
to Avoid noun-phrase collisions; Bypass noun-phrase collisions; and Correct for errors caused by
noun phrase collisions.

[001036] ABCs of 100% Accurate Lengthy Exposition

[001037] ABCs: [BC]. 100% accurate exposition can be achieved through Bypassing noun-
phrase collisions; and/or Correcting for errors made by noun phrase collisions.

[001038] Notice that Avoiding noun-phrase collisions is not on the list. Most modern LLMs
are autoregressive. That means that they produce their output one token at a time. Most
importantly, each output token is appended to the previous input — creating an ever-increasing

amount of input (called the context window). It is not possible to ensure that the ever-evolving
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context window does not eventually include noun-phrases that refer to two different entities yet
have a high vector similarity score. In fact, the likelihood of this occurring increases with every
additional token.

[001039] This is why models perform worse on open-ended questions than they do on closed-
domain. For example, o1-mini has a 60% on the closed-domain SimpleQA Benchmark and a 93%
hallucination rate on Open-Ended Questions benchmark.

[001040] A novel solution would be to incorporate Noun Phrase Collision Detection (NPCD)
in the LLM token generation process. If a token results in introducing a noun phrase collision, the
LLM can return all sentences up to, but not including, the sentence that introduces the noun phrase
collision. This can prevent the LLM from introducing a noun phrase collision into the context
window, and then, producing hallucinations going forward due to the introduction of the noun
phrase collision.

[001041] One way to minimize this issue for LLMs that do not include an NPCD is to break
the writing into smaller iterative tasks. For example, first use an LLM to generate a lengthy outline
such that each section of the outline solely requires one to three paragraphs. Then, generate each
section independently of the others, which significantly reduces the likelihood of noun-phrase
collisions, and thereby achieves high accuracy.

[001042] However, some embodiments may need to guarantee 100% accuracy when
providing Al-assisted exposition.

[001043] One way to achieve this is to bypass the issue by transforming the task into an
extractive one. An LLM can still generate the outline. However, an ISAR embodiment can be used
to retrieve facts that are relevant to each section. The FFs in each section can be joined using a
BSD Natural Language Response Formatting Process, thereby ensuring 100% accuracy on works
as long as 500 pages or more.

[001044] Another way to guarantee accuracy is to have the LLM write the entire length of
exposition. Then, convert the result to FFs. Replace each FF using vector searching and/or Ngram
SS F1 Searching. Then, join the facts into natural language using a BSD Natural Language
Response Formatting Process.

[001045] Selective FF MCI

[001046] When a task is split into multiple prompts (which therefore results in multiple calls
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to the LLM), and each prompt is devoid of noun phrase collisions, some embodiments may use FF
MCT only the LLM outputs that contain noun phrase collisions. A Noun Phrase Collision Detection
Process can be used to identify which outputs contain noun phrase collisions, and which ones do
not.

[001047] ABCs of 100% Accurate Summarization

[001048] ABCs: [BC] 100% accurate exposition can be achieved through Bypassing noun-
phrase collisions; and/or Correcting for errors made by noun phrase collisions.

[001049] The reason Avoidance is not on the list is due to the nature of summarization itself.
Asking an LLM to perform summarization without any external processes or corrections is asking
an LLM to perform a generative task without any outside assistance. This will eventually lead to
hallucinations.

[001050] Bypassing hallucinations can be done by taking the text to be summarized and
converting it to FFs. The LLM can be asked to choose the FFs that are most reflective of the overall
meaning of the text.

[001051] Testing has shown that this is an effective way to eliminate hallucinations, however,
the LLMs often do not pick the best FFs, leading to suboptimal relevance in the output.

[001052] The final method has been found to produce 100% accurate summaries with
optimal relevance. That is to have the LLM generate the summary using its inherent creativity, and
then, using an FF-MCI ensure that the summary is 100% accurate. FF S1 Search or Ngram FF S1
Search can be used as FF-MCI embodiments. An FF Corrective Groundedness Process can be used
as well.

[001053] Notice that the solution to 100% accurate summaries can be described in a single
sentence: have the LLM generate the summary using its inherent creativity, and then, using an
FF-MCI ensure that the summary is 100% accurate. This is the power of BSD, FFs, FF-MCI, and
ISAR. They are the inventive building blocks that can be combined to fully eliminate Al
hallucinations.

[001054] This one-sentence implementation was tested on summarizing 500 BBC articles
into a short headline. It did so with 100% accuracy across the board (see Figure 19).

[001055] Apple News recently stopped producing automated summaries of BBC articles

because its technology was producing hallucinations. The test method disclosed herein fully
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resolves the very task that Apple News stopped providing due to its inability to find a solution.
[001056] Interactive Query Clarification

[001057] For queries regarding narrative facts, ambiguous entity references render such a
query impossible to accurately respond to. For example, “When does the store open?” There is an
ambiguous entity reference: “the store.” Such a question cannot be answered.

[001058] However, consider the following query: “I want to go to Walmart located at 123
Main Street, My City. When does the store open?” In this instance, there is no ambiguous entity,
even though the phrase “the store” is included.

[001059] However, consider the following query: “I want to go to Walmart. When does the
store open?” The entity is still ambiguous, because the query does not specify which Walmart.
[001060] Thus, some embodiments that want to ensure 100% accuracy may want to ensure
that queries are devoid of ambiguous entity references before trying to act upon them.

[001061] An Entity Ambiguity Detection Process (EADP) can be used to detect such entities.
Such an EADP comes from an epiphany when working on resolving annotator disagreements in
the OntoNotes Corpus. The epiphany was that the existence of coreferences represents a
programmatic way of detecting entity ambiguity (after coreference resolution has been applied).
[001062] Applying coreference resolution to text and then using linguistic structure to
identify any remaining coreferences allows for the programmatic identification of entity
ambiguity.

[001063] Once again, consider the following query: “I want to go to Walmart located at 123
Main Street, My City. When does the store open?” At present, there is a coreference: “the store.”
[001064] Now consider the query after coreference resolution: “I want to go to Walmart
located at 123 Main Street, My City. When does Walmart located at 123 Main Street, My City
open?” Notice there are no remaining coreferences, and therefore, this query can be sent.
[001065] This led to another epiphany called Multi-Variate Coreference Resolution
(MVCR). MVCR refers to the combination of a full entity name and a descriptor that uniquely
identifies the particular entity from other entities that have the same name.

[001066] For example, descriptors of the entity type “store” can include: address, phone
number, and/or store ID.

[001067] In regards to entity type “person,” the full entity name can require both first and
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last name. The descriptor requirement can include: address, phone number, name of spouse, etc.
[001068] A database, memory map, or other storage can be created listing the entity types,
criteria for full entity name and acceptable descriptors.

[001069] The query can be standardized using a Grammar Correction Process.

[001070] A coreference resolution method that preserves the entirety of noun phrases can be
applied to the output of the Grammar Correction Process. (Such can preserve the descriptors.)
[001071] If any ambiguous references remain, the user can be prompted to supply additional
information. For example, Query: “When does the store open?” After coreference resolution, an
ambiguous reference remains: “the store.” The user can be programmatically prompted “Which
store?” or something similar.

[001072] If the entities are named, then the corresponding full entity name criteria can be
obtained. If the entity name(s) do not meet the criteria, then the user can be prompted to provide
the missing information.

[001073] For example: User: “When is his next movie?” Response: “Whose next movie?”
User: “Tom’s next movie?” Response: “What is Tom’s last name?” User: “Cruise.”

[001074] Such will occur for all entity types that have full entity name criteria. If an entity
type is not in the database, or if there is no full entity name criteria for the entity type, then the
process will simply continue to the next step.

[001075] Each entity type can be checked to see if it includes a descriptor requirement. If a
descriptor requirement is listed, the query is checked to see if one of the descriptors is present.
[001076] Since descriptors are typically named entities (e.g., address, phone number,
birthdate, spouse name, etc.), NER can be used to check if such exist. If non-named entity
descriptors are used (e.g., profession), then an LLM can be used and/or a list of words describing

professions can be checked to see if they are used in reference to the named entity.

[001077] If a descriptor is required and absent, the user can be prompted to provide the
descriptor.
[001078] It bears noting that some embodiments may require descriptors for entities such as

stores but not necessarily for entities involving people. Or they may tag person descriptors as
optional.

[001079] Such embodiments may operate from the presumption that the most famous person
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with that name is being referred to. Other embodiments may operate from the presumption that the
most famous person with that name is being referred to, unless a descriptor has been included in
the prompt.

[001080] Given that the number of chosen entity types, full name criteria, and descriptor
designations are finite, a BSD Query Disambiguation neural network can be trained. Such can
be combined with an NER or other Scope Reduction Process. For example, a first process can be
used to break the query into entity components.

[001081] For example: “When does Walmart open?” can first be converted into “When does
[store] open?” In other words, a BSD Entity Type Substitution process can be applied. A second
BSD Query Disambiguation can be trained on queries whose entity types have be token swapped.
“When does [store] open?” can be a training input and “Which [store] are you referring to? Kindly
provide an address, phone number or store location.” can be a BSD Target Output.

[001082] The program can then swap [store] with the store’s name.

[001083] BSD: The Building Blocks of 100% Accurate Al

[001084] Software engineers are trained to break larger problems into smaller units.
Typically, in the form of functions.

[001085] However, this same skill possessed by those in the art will make breaking fact-
based Al tasks into smaller BSD embodiments readily apparent, upon learning the content of this
disclosure.

[001086] The future of 100% accurate Al can be achieved by breaking larger problems into
a collection of BSD neural networks, in the same way that massive software undertakings are the
result of breaking problems into functions and objects. In fact, BSD NLP makes this possible.
[001087] Language itself does not conform to mathematical determinism. While algebra can
be deterministically applied to numbers, it cannot be applied to language. Moreover, neural
networks are stochastic entities in themselves (i.e., they operate on probabilistic evaluations).
[001088] Thus, one of the crowning achievements of the BSD NLP invention is the
development of innovative steps to bring determinism to non-deterministic language built on top
of stochastic processing. It is this achievement that finally allows NLP neural networks to be used
in a manner similar to programming functions, thereby providing the building blocks needed to

construct 100% accurate Al for a multitude of complex, otherwise intractable, tasks.
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[001089] Innovative Methods for Achieving 100% Accuracy on NLP and Al Tasks

[001090] The innovations of BSD neural networks, FFs, FF-MCI, ISAR, Noun-Phrase
Avoiding Processes (e.g., Noun-Phrase Collision Detection, Query Splitting, and Topical
Splitting), DFUs, and other methods disclosed herein have been extensively tested — including
using the methods disclosed herein to eliminate 100% of the hallucinations in the RAGTruth
dataset for both GPT-4 and GPT-3.5 Turbo for both Evident and Subtle Conflicts (see Figure 18).

Other Embodiments

[001091] It is to be understood that while the invention has been described in conjunction
with the detailed description thereof, the foregoing description is intended to illustrate and not limit
the scope of the invention, which is defined by the scope of the appended claims. Other aspects,

advantages, and modifications are within the scope of the following claims.
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ABSTRACT

Systems and methods are described for obtaining accurate responses from large language
models (LLMs) and chatbots, including for question and answering, exposition, and
summarization. These systems and methods accomplish these objectives via use of noun phrase
avoiding processes such as a noun phrase collision detection process, a query splitting process,
and a topical splitting process as well as by use of formatted facts, formatted fact model correction
interfaces (FF MClIs), bounded-scope deterministic (BSD) neural networks, processes and
methods, and intelligent storage and retrieval (ISAR) systems and methods. These systems and
methods avoid and bypass noun phrase collisions and correct for errors caused by noun phrase

collisions so that hallucinations are eliminated from LLM responses.
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Figure 3

Example Training Input/Target Output for creating a BSD NLP Network for Sentence Simplification

Training Input

Target Output

Apollo 11 was a spaceflight conducted from July 16
to July 24, 1969 by the United States and launched
by NASA.

Apollo 11 was a spaceflight. The spaceflight was conducted from July 16 to July
24, 1969. The spaceflight was conducted by the United States. The spaceflight
'was launched by NASA.

It marked the first time that humans landed on the
Moon.

It marked the first time that humans landed on the Moon.

Commander Neil Armstrong and Lunar Module Pilot
Buzz Aldrin landed the Apollo Lunar Module Eagle
on July 20, 1969, at 20:17 UTC, and Armstrong
became the first person to step onto the Moon's
surface six hours and 39 minutes later, on July 21 at
02:56 UTC.

Commander Neil Armstrong and Lunar Module Pilot Buzz Aldrin landed the
Apollo Lunar Module Eagle. They landed the Apollo Lunar Module Eagle on
July 20, 1969. They landed the Apollo Lunar Module Eagle at 20:17 UTC.
Armstrong became the first person to step onto the Moon's surface six hours and
39 minutes later. Armstrong became the first person to step onto the Moon's
surface on July 21. Armstrong became the first person to step onto the Moon's
surface at 02:56 UTC.

Aldrin joined him 19 minutes later, and they spent
about two and a quarter hours together exploring the
site they had named Tranquility Base upon landing.

Aldrin joined him 19 minutes later. They spent about two and a quarter hours
together exploring the site. They had named the site Tranquility Base upon
landing.

Armstrong and Aldrin collected 47.5 pounds (21.5
kg) of lunar material to bring back to Earth as pilot
Michael Collins flew the Command Module
Columbia in lunar orbit, and were on the Moon's
surface for 21 hours, 36 minutes, before lifting off to
rejoin Columbia.

Armstrong and Aldrin collected 47.5 pounds (21.5 kg) of lunar material. They
collected the lunar material to bring back to Earth. They collected the lunar
material as pilot Michael Collins flew the Command Module Columbia in lunar
orbit. They were on the Moon's surface for 21 hours, 36 minutes. Then they
lifted off to rejoin Columbia.




Figure 4

Example embodiment for 100% accurate BSD NLP transformation on complex documents.
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Figure S

Example BSD FF Pipeline
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Figure 6

Example Relative Date Conversion Process
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Figure 7

Document Chunking Process
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Figure 8

Payload Ingestion Process
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Figure 9

Query Processing
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Figure 10

NGram Loop
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Figure 11

Expansion Loop
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Figure 12

NGram Search
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Figure 13

FF S1 Search
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Figure 14

Example Data from RAGTruth

Query

1400
—\\\)

what are some physical and chemical properties of magnesium and calcium

Source Passages

1401

The chemical properties of calcium are reacts with oxygen and reacts with water. There are
other chemical properties, but not all of them are true for calcium.These are the two that [
know.he chemical properties of calcium are reacts with oxygen and reacts with water. There
are other chemical properties, but not all of them are true for calcium.

1402

Chemical and Physical Properties of Magnesium. Magnesium is one of the most important
elements that is present in many compounds as well as alloys. It is widely used as a chemical
reagent, desulfurization agent, and vital ingredient in fireworks.It finds multiple applications
due to its unique chemical and physical properties.s mentioned in the chemical properties,
magnesium is also present in many other compounds like dolomite, magnesium carbonate
(that is also known as magnesite), and magnesium sulfate (which is also known by the name
epsomite).

1403

Calcium: Physical Properties --silver-grey metal. melts at 840°C, boils at 1484°C to produce
monatomic gas. density 1540 kg/m”3. Conductor of electricity but a poor one com ... pared
to most other metals.Diamagnetic. Chemical properties -- tamishes rapidly in air to produce
a powdery, flaky oxide coating.Reacts steadily with water, giving off bubbles of hydrogen
and a solution/slurry of alkaline, sparingly soluble calcium hydroxide. Flammable at high
temperatures with oxygen, or air.an also burn in nitrogen to form calcium nitride or carbon
dioxide to form calcium carbonate. Nearly all compounds are in oxidation state +2, and the
water chemistry of calcium is dominated by the hydrated Ca(2-+) ion.




Figure 15

Example BSD Natural Language Response Formatting Training Set Generation
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Figure 16

Example ISAR Query Response with BSD Natural Language Formatting
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